Loading...
Search for: shakourian-fard--m
0.005 seconds

    Selective oxidation of sulfides to sulfoxides by a molybdate-based catalyst using 30% hydrogen peroxide

    , Article Catalysis Communications ; Vol. 52, issue , July , 2014 , pp. 16-21 ; ISSN: 15667367 Bayat, A ; Shakourian-Fard, M ; Hashemi, M. M ; Sharif University of Technology
    Abstract
    An efficient method is reported for selective oxidation of various types of sulfides to sulfoxides and sulfones in good to high yields using 30% H 2O2 in the presence of catalytic amounts of molybdate-based catalyst in acetonitrile as solvent at room temperature. The catalyst can be easily recovered and reused for seven reaction cycles without considerable loss of activity  

    Cooperativity effects of intramolecular OH...O interactions on pK a values of polyolalkyl sulfonic acids in the gas phase and solution: A density functional theory study

    , Article Journal of Physical Organic Chemistry ; Vol. 27, issue. 7 , 2014 , p. 604-612 Najdian, A ; Shakourian-Fard, M ; Fattahi, A ; Sharif University of Technology
    Abstract
    Density functional theory method and B3LYP/6-311++G(d,p) level of theory were used to determine the acidity of alkyl sulfonic acids and polyolalkyl sulfonic acids in the gas and solution (H2O, DMSO, and CH 3CN) phase. Polarized continuum model was applied to calculate pKa values of alkyl sulfonic acids and polyolalkyl sulfonic acids. A comparison between acidity of alkyl sulfonic acids and polyolalkyl sulfonic acids in the gas and solution phase indicates that the acidity strength of polyolalkyl sulfonic acids enhances with the increase of the cooperativity effect of intramolecular hydrogen bonds in polyolalkyl sulfonic acids. Natural bond orbital and quantum theory of atoms in molecules... 

    Computational investigation of thermochemical properties of non-natural C-nucloebases: Different hydrogen-bonding preferences for non-natural Watson-Crick base pairs

    , Article Structural Chemistry ; Volume 24, Issue 4 , 2013 , Pages 1015-1025 ; 10400400 (ISSN) Aliakbar Tehrani, Z ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    2013
    Abstract
    In the present density functional theory study, we have compared intrinsic properties of non-natural nucleobases (acA, acG, acC, and acT nucleobases) such as proton affinities, gas phase acidities, tautomerization, and hydrogen-bonding properties with those in normal Watson-Crick nucleobases (A, G, C, T nucleobases). The hydrogen-bonding interactions in non-natural and Watson-Crick base pairs were studied at B3LYP/6-311++G (d,p) level regarding their geometries, energies, and topological features of the electron density. The quantum theory of atoms-in-molecule (QTAIM) and natural bond orbital (NBO) analyses were employed to elucidate the interaction characteristics in base pairs. The... 

    Design of silica supported task-specific ionic liquid catalyst system for oxidation of cyclohexene to adipic acid with 30% H 2O 2

    , Article Catalysis Communications ; Volume 26 , September , 2012 , Pages 54-57 ; 15667367 (ISSN) Vafaeezadeh, M ; Hashemi, M. M ; Shakourian Fard, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    1-Butyl-3-methylimidazolium tungstate ([BMIm] 2WO 4) ionic liquid supported onto silica sulphamic acid demonstrated desirable performance for oxidation of cyclohexene to adipic acid. Simple experimental procedure, easy product isolation, catalyst recovery and reusability are some attractive features of this protocol  

    Influence of the hydrogen bonding on the basicity of selected macrocyclic amines

    , Article Journal of Physical Organic Chemistry ; Volume 25, Issue 9 , 2012 , Pages 803-810 ; 08943230 (ISSN) Nasiri, M ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    The optimized minimum-energy geometries of different macrocyclic amines and their protonated structures were determined by using ab initio and density functional theory (DFT) calculations. All the gas phase optimizations and energy calculations were performed at the DFT/B3LYP/6-311++G(d,p) level of theory. The HF/6-31 + G(d,p) level was used for all single point calculations in the solution phase. Geometry optimizations indicate that the most stable structures are stabilized by intramolecular hydrogen bonds. The proton affinity (PA) of macrocyclic amines is controlled by the strength of intramolecular hydrogen bonds of macrocyclic amines. These hydrogen bonds strongly influence the basicity... 

    Molecular structure and character of bonding of mono and divalent metal cations (Li +, Na +, K +, Mg 2+, Ca 2+, Zn 2+, and cu +) with guanosine: AIM and NBO analysis

    , Article Structural Chemistry ; Volume 23, Issue 3 , June , 2012 , Pages 613-626 ; 10400400 (ISSN) Ahmadi, M. S ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    The B3LYP/6-311++G (d,p) density functional approach was used to study the gas-phase metal affinities of Guanosine (ribonucleoside) for the Li +, Na +, K +, Mg 2+, Ca 2+, Zn 2+, and Cu + cations. In this study we determine coordination geometries, binding strength, absolute metal ion affinities, and free energies for the most stable products. We have also compared the results for Guanosine, with our previously reported results for 20-Deoxyguanosine. Based on the results, it is obvious that MIA is strongly dependent on the charge-to-size ratio of the cation. Guanosine interacts more strongly with Zn 2+ than do with Mg 2+, Ca 2+, and Cu? and therefore stronger interactions lead to higher MIA.... 

    What roles do boron substitutions play in structural, tautomeric, base pairing and electronic properties of uracil? NBO & AIM analysis

    , Article Journal of Physical Organic Chemistry ; Volume 25, Issue 9 , 2012 , Pages 787-796 ; 08943230 (ISSN) AliakbarTehrani, Z ; Abedin, A ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    Wiley  2012
    Abstract
    The synthesis of modified versions of deoxyribonucleic acid is an area that is receiving much attention. The replacement of the nitrogen atom on the nucleobases with boron atom has provided insight into deoxyribonucleic acid and ribonucleic acid stability, recognition, and replication at the atomic level. In the present research, we investigated a detailed density functional theory study of the structural, tautomeric, base-pairing ability, bond dissociation energy, and electronic properties of two boron analogues (i.e., boron substitutions at 4-position and 5-position of uracil) of uracil nucleobase. The effects of these modifications on theirs acid-base properties have been considered. Our... 

    A green procedure for direct oxidation of organic halides to aldehydes and ketones catalyzed by a molybdate-based catalyst

    , Article New Journal of Chemistry ; Volume 39, Issue 5 , Feb , 2015 , Pages 3845-3851 ; 11440546 (ISSN) Bayat, A ; Shakourian Fard, M ; Ramezanpour, S ; Mahmoodi Hashemi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    A molybdate-based heterogeneous magnetic catalyst was synthesized and used in direct oxidation of various primary and secondary organic halides to the corresponding aldehydes and ketones using 30% H2O2 as an oxidant in ethanol. Various organic halides were oxidized to their corresponding aldehydes and ketones in good to excellent yields. The catalyst system can be easily separated by applying an external magnetic field and reused for 6 runs without any significant loss of catalytic activity. The catalyst was fully characterized by FT-IR, SEM, TEM, EDS, XRD, VSM, ICP-AES techniques, and elemental analysis (CHN)  

    Silver nanoparticles supported on silica-coated ferrite as magnetic and reusable catalysts for oxidant-free alcohol dehydrogenation

    , Article RSC Advances ; Volume 5, Issue 29 , Jan , 2015 , Pages 22503-22509 ; 20462069 (ISSN) Bayat, A ; Shakourian Fard, M ; Ehyaei, N ; Mahmoodi Hashemi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Silver (0) nanoparticles supported on silica-coated ferrite were synthesized to be used as an efficient and recyclable heterogeneous catalyst for oxidant-free dehydrogenation of alcohols to the corresponding carbonyl compounds. The catalyst can be easily recovered and reused for 8 reaction cycles without considerable loss of activity. The facile recovery of the catalyst is carried out by applying an external magnetic device. The catalyst was fully characterized by the techniques of TEM, SEM, XRD, EDS, ICP-AES, and VSM. This journal is  

    A highly reactive and magnetic recyclable catalyst based on silver nanoparticles supported on ferrite for n-monoalkylation of amines with alcohols

    , Article Applied Organometallic Chemistry ; Volume 31, Issue 10 , 2017 ; 02682605 (ISSN) Bayat, A ; Shakourian Fard, M ; Nouri, P ; Mahmoodi Hashemi, M ; Sharif University of Technology
    Abstract
    Fe3O4@SiO2-Ag catalyst was found to be highly active and selective in the N-alkylation of amines with a variety of aromatic and linear alcohols. The heterogeneous nature of the Fe3O4@SiO2-Ag catalyst allows easy recovery and regeneration by applying an external magnet for six subsequent reaction cycles. The prepared catalyst was characterized using electron microscopy techniques, X-ray diffraction, vibrating sample magnetometry and atomic absorption spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd  

    Silver nanoparticles immobilized onto poly(4-vinylpyridine)-functionalized magnetic nanoparticles: a robust magnetically recyclable catalyst for oxidant-free alcohol dehydrogenation

    , Article Applied Organometallic Chemistry ; Volume 32, Issue 2 , February , 2018 ; 02682605 (ISSN) Bayat, A ; Shakourian Fard, M ; Talebloo, N ; Mahmoodi Hashemi, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    A heterogeneous and recyclable catalyst with a high loading of silver nanoparticles was synthesized via the silver nanoparticles being supported onto the surface of magnetic nanoparticles coated with poly(4-vinylpyridine). The synthesized catalyst was used in the dehydrogenation of alcohols to corresponding carbonyl compounds. A broad diversity of alcohols was converted into their corresponding carbonyl compounds in excellent yields. The catalyst was easily recovered by applying an external magnetic field and reused for seven reaction cycles without considerable loss of activity. The catalyst was fully characterized using various techniques. Copyright © 2017 John Wiley & Sons, Ltd  

    Design and synthesis of new family of ionic liquids based on 2-iminium-1,3-dithiolanes: A combined theoretical and experimental effort

    , Article Journal of Molecular Structure ; Vol. 1056-1057, issue. 1 , January , 2014 , p. 56-62 Ziyaei Halimehjani, A ; Shakourian-Fard, M ; Farvardin, M. V ; Raeesi, M ; Hashemi, M. M ; Behzadi, H ; Sharif University of Technology
    Abstract
    An efficient method for synthesis of 2-iminium-1,3-dithiolane as a new family of ionic liquids with reaction of dithiocarbamates with methyl triflouromethanesulfonate was described. Theoretical study on the synthesized ionic liquids was also performed by quantum chemistry calculation. Geometry optimization on the ion pairs was carried out with the B3LYP/6-311++G(d,p) level of theory. The interaction energies were calculated, and corrected by the basis set superposition error (BSSE) calculated by the counterpoise method. The results of natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses indicate that the interactions occur via hydrogen bonding between oxygen... 

    Selective aqueous oxidation of alcohols catalyzed by copper (II) phthalocyanine nanoparticles

    , Article Comptes Rendus Chimie ; Volume 19, Issue 3 , 2016 , Pages 313-318 ; 16310748 (ISSN) Kheirjou, S ; Kheirjou, R ; Rezayan, A. H ; Shakourian Fard, M ; Mahmoudi Hashemi, M ; Sharif University of Technology
    Elsevier Masson SAS 
    Abstract
    A new catalyst based on metallophthalocyanine nanoparticles has been synthesized and characterized by scanning electron microscopy (SEM). The aqueous oxidation of alcohols to the corresponding carbonyl compounds (aldehydes and ketones) has been studied using tetra-n-butyl-ammonium-peroxo-monosulfate (n-Bu4NHSO5) as an oxidant and a catalytic system consisting of copper (II) phthalocyanine nanoparticles in water. The highly selective oxidation gave excellent yields of related aldehydes or ketones without remarkable over-oxidation of the carboxylic acids. Organic co-solvents, surfactants, and co-catalysts were not used in this catalytic strategy. This strategy was green and time effective. The...