Search for: taghizadeh-manzari--mehrdad
0.006 seconds
Total 48 records

    Modeling Multiphase Fluid Flow Using SPH

    , M.Sc. Thesis Sharif University of Technology Safdari Shadloo, Mostafa (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method for simulation of fluid flow. Movable particles are used to interpolate fluid properties instead of fixed Eulerian grids in this method. By essence, the aforesaid particles are movable points which carry the fluid properties such as temperature, enthalpy, density, etc. these variables can also be the stress, strain or the rheological properties of the fluid. Thus, this method needs no grids and the fluid properties are calculated using an interpolation mechanism which classifies this method as meshless. A computational code is designed using SPH for the simulation of multiphase flows. Usage of the Lagrangian formulation has made it... 

    Horizontal Well Modeling in Naturally Fractured Reservoirs Using Dual Porosity-Dual Permeability Model

    , M.Sc. Thesis Sharif University of Technology Hajimirza, Sahand (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    In this article, we investigate the transient pressure response and production rate of horizontal wells in a dual porosity-dual permeability naturally fractured reservoir.First, the point source solution is derived in Laplace transform space and then pressure distribution and horizontal well response is obtained using the principle of superposition. In our model, despite of dual porosity model, matrix system is directly connected to horizontal wellbore as well as fracture system and has an influence on type curves characteristics. We also showed that type curves characteristics are affected by horizontal well length, well eccentricity, external boundary conditions, permeability and storavity... 

    Design and Implementation of a Parallel Algorithm for FPS-MPFA Scheme to Simulate Flow in Anisotropic Porous Media

    , M.Sc. Thesis Sharif University of Technology Dehghan Manshadi, Mostafa (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Continuous approximation of pressure and flux fields is one of main goals of simulating flow in porous media. To compute the pressure field in heterogeneous and anisotropic media using minimum memory and time, it is necessary to use a conservative flux-continuous scheme. Nowadays, one of the most efficient approaches to minimize the solving time of large-scale problems is parallel computing. In this research, a parallel algorithm for flux-continuous multi-point flux approximation (MPFA) scheme with full pressure support (FPS) is designed and implemented on unstructured triangular grids by cell-centered approach. In this work, 2D single phase flows are investigated. The results are presented... 

    Numerical Solution of Three Phase Buckley-Leverett Problem in One-Dimension

    , M.Sc. Thesis Sharif University of Technology Ramzanpour, Mohammad Reza (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    The solution to the hyperbolic conservation laws may involve discontinuities or shocks even if initial condition is smooth. Devising low cost methods which can identify shocks accurately, has always been a challenge. This project focuses on applying high resolution schemes to the solution of two and three phase Buckley-Leverett equation and hyperbolic conservation laws in general.Buckley-Leverett equation is a transport equation which is used to describe two and three phase flows in porous media. Weighted Essentially Non-Oscillatory (WENO) schemes with reconstruction on fluxes in finite difference formulation are used to solve one dimensional systems of equations including Euler equation as... 

    Prediciton of Suspensions Bulk Viscosity Using Immersed Boundary Approach in the Framework of the Lattice Boltzmann Method

    , Ph.D. Dissertation Sharif University of Technology Farnoush, Somayeh (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    In this study, bulk viscosity of suspensions is predicted using numerical simulation.The elaborated numerical method consists of the lattice Boltzmann (LB) method for fluid matrix simulation and the immersed boundary (IB) method for solid boundary implementation. In order to successfully implement the IB method in the frame-work of the LB method, two important challenges, which are body force modeling in the LB method and numerical velocity slip on solid boundaries, are discussed. As a first challenge, body force modeling in the LB method is studied by using a uni-fied framework which has been devised in this study. Using this unified framework,firstly, errors of different body force... 

    Comparison of Transfer Functions in Dual Porosity-Dual Permeability Model in Simulation of Naturally Fractured Reservoirs in Two Phase Water-Oil Systems

    , M.Sc. Thesis Sharif University of Technology Asadbegi, Mohsen (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    In this study, simulation of two-phase water-oil compressible flow in naturally fractured reservoirs is studied. The studied reservoir has a 1D and horizontal ge-ometry that its properties such as porosity and permeability are homogeneous.Dual Porosity and Dual Porosity-Dual Permeability models are employed for simulation of reservoir. Reservoir descriptive equations are conservation of mass and momentum. Conservation of momentum equation is simplified by Darcy law and two-phase fluid flow is simulated with Black-oil model. Discretization of equations is done by finite volume method. In order to solve the equations of two-phase compressible fluid flow, the so-called IMPES (Implicit Pressure... 

    An Implicit Numerical Method for Simulation of Gas Production and Recycling in Gas-condensate Reservoirs Using a Two-phase Compositional Model

    , M.Sc. Thesis Sharif University of Technology Asgari, Milad (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    In this project, a response of a single well in a gas condensate reservoir has been investigated by compositional modeling and implicit numerical method. The most significant goals of this paper are as follows: 1- Examination of the flow produced in a gas condensate reservoir in constant pressure or mass rate. 2- Investigation of variables affecting the productivity of reservoir. 3- The study of effect of injection and gas cycling to the well on the production. A three-zone model has been used in this study as if there is only gas phase in the third and second zones. Condensation occurs since the pressure drops below the dewpoint pressure in the second zone; however, gas phase is only... 

    Pore-Scale Numerical Simulation of Two-phase Flows in Periodic Porous Media Using SPH

    , Ph.D. Dissertation Sharif University of Technology Fatehi, Rouhollah (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Study of two-phase flowin porous media forms a basis for investigating various fluid systemsin the nature and industries. In recent years, more and more researchers use pore-scale mod-els to explore various physical phenomena occurring in complex media such as hydrocarbonreservoirs. After solving the flow equations in pore-scale, this approach can be utilized tocalculate some macroscopic values using particular forms of averaged flow field.In this research, Smoothed Particle Hydrodynamics (SPH) is used to simulate two-phaseflow in pore spaces of two- and three-dimensional porous media. The SPH method is a La-grangian meshless method that is suitable for flows with free surfaces, deformable... 

    Study of Capillary Pressure Effect on Multiphase Flow in Hydrocarbon Reservoirs

    , M.Sc. Thesis Sharif University of Technology Biglarian, Hassan (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    One of the most important issues in the petroleum industry, is how to increase the oil production from hydrocarbon reservoirs. The optimum design of an enhanced oil recovery process needs the knowledge on the physical phenomena of the working flow in oil reservoirs. An important aspect of any oil recovery process is the effectiveness of process fluid in removing oil from the rock pores at microscopic scales, in a way that it determines the success or failure of the recovery process. Meanwhile, one of the most important factors on the fluid mobility and as a result the microscopic mobility efficiency is the pressure difference between different phases in narrow paths of porous media. This... 

    Uncertainty Quantification of Two Phase Immiscible Water Oil Flow

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Mehrdad (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    In this project، the immiscible two phase flow of oil-water in the absence of gravity in the two dimensional domain is investigated. The uncertainty quantification of pressure and saturation of fluid in the reservoir are calculated by the methods of statistical moment equation (presented by Tchelepi) and probabilistic collocation method combined with Karhunen Loeve expansion (presented by Heng Lee). Then the results are compared with Monte Carlo simulation. Matlab Reservoir Simulation Toolbox is used for flow simulation. The main problem based on Tchelepi’s work[56[ ، is a horizontal two dimensional problem that there is two injection and production wells at the two end point grids (a... 

    Simulation of Flow in Anisotropic Heterogeneous Oil Reservoirs Using Compositional Model and Cell-Based Unstructured Grid

    , Ph.D. Dissertation Sharif University of Technology Moshiri, Mojtaba (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Reservoir simulation is a useful tool for efficient reservoir management and protective exploitation of non-renewable hydrocarbon resources as the main supplier of development programs in the country. Due to the nature of underground hydrocarbon reservoirs, the simulation faces several challenges, both in rock and fluid parts. These challenges should be overcome in order to provide reliable results from simulations. One of the major challenges pertaining to rock, is large discontinuous variations accompanied by anisotropy of rock permeability fields which causes numerous problems when governing equations are solved numerically. A viable numerical procedure shall account for complex reservoir... 

    Simulation of Magnetohydrodynamic Flow in the MWEC Generator Duct Using OpenFOAM Software

    , M.Sc. Thesis Sharif University of Technology Azadi, Ehsan (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Magnetohydrodynamic (MHD) flow is concerned with the interaction between the magnetic field and electrically conducting fluid flow. In this investigation, the MHD flow in the duct of magnetohydrodynamic wave energy conversion (MWEC) generator was simulated by use of OpenFOAM software. In the MWEC generator the reciprocating motion of ocean waves lead to electrically conducting fluid flow in the duct of this generator. By applying magnetic field perpendicular to this flow, electric current generate in the fluid. This generator has a higher efficiency compared with other ocean wave energy conversion generators. Firstly, to evaluate accuracy and performance of mhdFOAM code of OpenFOAM, three... 

    Optimization of PARSI Reservoir Simulator and Enhancement in Modeling Capillary Pressure and Gravity Effect

    , M.Sc. Thesis Sharif University of Technology Rasooli, Alireza (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    In this research, a novel scheme for flux approximation in finite volume central schemes have been presented, evaluated and used in PARSI reservoir simulator to solve black oil equations with Trangenstein & Bell formulation with gravitational effects. Also, a numerical method, have been proposed to increase the ability of modeling of capillary phenomena to PARSI.Edward's dominant wave-capturing scheme (2005), with Harten-Hymen entropy fix (1983), has been used to solve flow equations with gravity. This scheme relies on the detection of the dominant wave in the system without recourse to characteristic decomposition and upwinding while avoiding the excessive numerical diffusion that is... 

    Simulation of Fluid-Solid Mixtures Using SPH Method

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mohammad Reza (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Taghizadeh Manzari, M. (In this work, a modified Smoothed Particle Hydrodynamics (SPH) method, with a new moving solid boundary treatment approach, is utilized to simulate the particulateflow problems. The renormalized first and second derivative schemes which lead tothe consistency of the method, are also used along with a modification to the continuityequation which prevents the spurious pressure oscillations. The proposed methodis validated by solving benchmark problems of solid body motion in channel flows.There is a good agreement between the obtained results and those reported in theliterature. The convergence of solutions for different domain discretizations is alsoassessed. In order... 

    Comparison and Evaluation of the Performance of some Fundamental Models for Simulation of Naturally Fractured Hydrocarbon Reservoirs

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Siamak (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Fractured reservoirs show a different behavior from common reservoirs because of the existence of a broad network of fractures. This phenomenon makes it necessary to apply special methods for fractured reservoirs in the procedure of reservoir simulation. Since twenty percent of petroleum content in the world is buried in fractured reservoirs, investigating these reservoirs is of great importance.
    The first step in simulation of these kinds of reservoirs is to come up with a geometrical model which can be used to take the fracture network influence into account. In the course for reaching such an objective, various models have been developed which are based on specific assumptions and in... 

    Simulation of Flow in 2Dimensional Fractured Hydrocarbon Reservoirs Using Black-Oil Model and Multi-scale Finite Volume Method

    , M.Sc. Thesis Sharif University of Technology Saidimanesh, Mahdi (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    The goal of this research is to introduce and improve the new multiscale finite volume method for simulation of multiphase flow in porous media. This method has recently presented as an efficient approach in computational fluids dynamics field. This thesis contains the followings: In the first step a brief introduction is presented about petroleum reservoir engineering and different methods of oil production. Then the importance of new simulation methods to anticipate the behavior of these reservoirs with detailed geographical information is discussed. In the second section black-oil formulation in petroleum reservoirs is descritized with the aid of finite volume method. Using general... 

    Combination of a Multi-scale Finite Volume and Streamline Methods for Reservoir Simulation

    , M.Sc. Thesis Sharif University of Technology Faroughi, Salahaddin (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    In this work, the combination of a multi-scale finite volume and streamline methods is presented for subsurface flow modeling. The used multi-scale method in this work is the same with the traditional type of it in algorithm and formulation. However, because of using a new mesh structure for implementation of multi-scale finite volume method, the new method named by Staggered Mesh Multi-scale Finite Volume (SMMsFV) method. Using the staggered mesh has some advantages such as reducing the computational cost and increasing the accuracy of the multi-scale method. In the SMMsFV method, first the coarse grid and dual coarse grid are constructed on the underlying fine grid. Then, the basis and... 

    Multi-resolution Multiscale Finite Volume Method for Reservoir Simulation

    , Ph.D. Dissertation Sharif University of Technology Mosharaf Dehkordi, Mehdi (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Many of natural porous media, especially oil reservoirs, have strong heterogeneities that span a wide range of scales. These heterogeneities are manifested in the form of strong variations in the permeability field. These variations can be of several orders of magnitude within a small distance. Therefore, the flow in porous media is a multiscale Phenomenon. Due to prohibitive size of input data, numerical simulation of such problems needs extremely large computer memory and computational time, which can be impractical in some cases. In recent years, multiscale methods as a powerful tool have been employed to tackle this problem. In present study, a family of non-iterative Multiscale Finite... 

    Study of Rheology of Suspensions Using SPH Method and Immersed Boundary Method

    , M.Sc. Thesis Sharif University of Technology Jahangiri Mamouri, Sina (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    In this thesis, an Incompressible SPH (ISPH) method is used to simulate suspensions. A suspension is assumed to be a mixture of solid particles in a Newtonian fluid. First, renormalization tensors are applied to the discretized equations of SPH method. This leads to a higher accuracy in this method. It should be noted that the projection method is used for ISPH. After that, the Immersed Boundary Method (IBM) is used to model and simulate the presence of solid particles in fluid flow. Some modifications were necessary to use IBM with Lagrangian approach. Then, some benchmark problems are solved to validate the presented method. The main objective of the present thesis is simulation of... 

    Numerical Solution Of One-Dimensional Non-Fourier Bioheat Transfer Through Skin Tissue

    , M.Sc. Thesis Sharif University of Technology Fazel, Zeynab (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Innovations in laser, microwaves, and similar technologies have significantly advanced thermal treatments for diseases or even injuries concerning skin tissue. For a thorough understanding in the underlying mechanisms of bioheat transfer behavior of skin,a1D unsteady non-dimensional hyperbolic model of heat transfer through this tissue with metabolic heat generation which is subject to specific boundary conditions, is solved numerically using the finite difference method. A thermal shock is generated at the base of the tissue, which moves forward with a finite speed. A Numerical solution for a simple one-layer skin tissue is obtained. Then, the effects of various parameters, time step,...