Loading...
Search for: vaezi--a
0.006 seconds

    Anyonic self-induced disorder in a stabilizer code: quasi many-body localization in a translational invariant model

    , Article Physical Review B ; Volume 97, Issue 5 , Febraury , 2018 ; 24699950 (ISSN) Yarloo, H ; Langari, A ; Vaezi, A ; Sharif University of Technology
    American Physical Society  2018
    Abstract
    We enquire into the quasi many-body localization in topologically ordered states of matter, revolving around the case of Kitaev toric code on the ladder geometry, where different types of anyonic defects carry different masses induced by environmental errors. Our study verifies that the presence of anyons generates a complex energy landscape solely through braiding statistics, which suffices to suppress the diffusion of defects in such clean, multicomponent anyonic liquid. This nonergodic dynamics suggests a promising scenario for investigation of quasi many-body localization. Computing standard diagnostics evidences that a typical initial inhomogeneity of anyons gives birth to a glassy... 

    Phase transition and fractionalization in the superconducting Kondo lattice model

    , Article Physical Review B ; Volume 106, Issue 19 , 2022 ; 24699950 (ISSN) Mohammadi, F ; Saedpanah, A ; Vaezi, A ; Kargarian, M ; Sharif University of Technology
    American Physical Society  2022
    Abstract
    Topology, symmetry, electron correlations, and the interplay between them have formed the cornerstone of our understanding of quantum materials in recent years and are used to identify new emerging phases. While the first two give a fair understanding of noninteracting and, in many cases, weakly interacting wave function of electron systems, the inclusion of strong correlations could change the picture substantially. The Kondo lattice model is a paradigmatic example of the interplay of electron correlations and conduction electrons of a metallic system, describing heavy fermion materials and also fractionalized Fermi liquid pertaining to an underlying gauge symmetry and topological orders.... 

    Effect of simultaneous chemical substitution of A and B sites on the electronic structure of BiFeO3 films grown on BaTiO 3/SiO2/Si substrate

    , Article Journal of Materials Science: Materials in Electronics ; Volume 24, Issue 6 , 2013 , Pages 2128-2134 ; 09574522 (ISSN) Ahadi, K ; Nemati, A ; Mahdavi, S. M ; Vaezi, A ; Sharif University of Technology
    2013
    Abstract
    Electrical properties and electronic structure of Bi1-xCa xFe1-yMnyO3-δ grown by pulsed-laser deposition on BaTiO3/SiO2/Si substrate were investigated. Results showed that Ca has drastic effect on symmetry of crystal and electrical poperties of BiFeO3. On the other hand, Mn revealed to have more radical effect on optical properties and energy gap of the compound. XPS results represented that although Ca tend to decrease Fe valence state, Mn tends to stabilize it at 3+ (at least in this concentrations). UV-visible study yielded bandgap of 2.51-2.81 eV (at 300 K) for different concentrations of Ca and Mn. UV-visible spectra also revealed sub-bandgap defect transitions at 2.2 and 2.4 eV.... 

    Doping the Kane-Mele-Hubbard model: A slave-boson approach

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 84, Issue 23 , 2011 ; 10980121 (ISSN) Wen, J ; Kargarian, M ; Vaezi, A ; Fiete, G. A ; Sharif University of Technology
    2011
    Abstract
    We study the Kane-Mele-Hubbard model both at half-filling and away from half-filling using a slave-boson mean-field approach at zero temperature. We obtain a phase diagram at half-filling and discuss its connection to recent results from quantum Monte Carlo, cellular dynamical mean field, slave-rotor, and Z 2 mean-field studies. In particular, we find a small window in parameter space where a spin-liquid phase with gapped spin and charge excitations reside. Upon doping, we show the spin-liquid state becomes a superconducting state by explicitly calculating the singlet pairing order parameters. Interestingly, we find an "optimal" doping for such superconductivity. Our work reveals some of the... 

    Engineering quantum Hall phases in a synthetic bilayer graphene system

    , Article Physical Review B ; Volume 102, Issue 8 , 2020 Cian, Z. P ; Grass, T ; Vaezi, A ; Liu, Z ; Hafezi, M ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    Synthetic quantum Hall bilayer (SQHB), realized by optically driven monolayer graphene in the quantum Hall regime, provides a flexible platform for engineering quantum Hall phases as discussed in Ghazaryan et al. [Phys. Rev. Lett. 119, 247403 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.247403]. The coherent driving which couples two Landau levels mimics an effective tunneling between synthetic layers. The tunneling strength, the effective Zeeman coupling, and two-body interaction matrix elements are tunable by varying the driving frequency and the driving strength. Using infinite density matrix renormalization group techniques combined with exact diagonalization, we show that the system... 

    Entanglement Hamiltonian of interacting systems: Local temperature approximation and beyond

    , Article Physical Review Research ; Volume 3, Issue 1 , 2021 ; 26431564 (ISSN) Pourjafarabadi, M ; Najafzadeh, H ; Vaezi, M. S ; Vaezi, A ; Sharif University of Technology
    American Physical Society  2021
    Abstract
    We investigate the second quantization form of the entanglement Hamiltonian (EH) of various subregions for the ground state of several interacting lattice fermions and spin models. The relation between the EH and the model Hamiltonian itself is an unsolved problem for the ground state of generic local Hamiltonians. In this paper, we demonstrate that the EH is practically local and its dominant components are related to the terms present in the model Hamiltonian up to a smooth spatially varying temperature even for (a) discrete lattice systems, (b) systems with no emergent conformal or Lorentz symmetry, and (c) subsystems with nonflat boundaries, up to relatively strong interactions. We show... 

    Chiral ising Gross-Neveu criticality of a single Dirac Cone: A quantum Monte Carlo study

    , Article Physical Review Letters ; Volume 128, Issue 22 , 2022 ; 00319007 (ISSN) Tabatabaei, S. M ; Negari, A. R ; Maciejko, J ; Vaezi, A ; Sharif University of Technology
    American Physical Society  2022
    Abstract
    We perform large-scale quantum Monte Carlo simulations of SLAC fermions on a two-dimensional square lattice at half filling with a single Dirac cone with N=2 spinor components and repulsive on-site interactions. Despite the presence of a sign problem, we accurately identify the critical interaction strength Uc=7.28±0.02 in units of the hopping amplitude, for a continuous quantum phase transition between a paramagnetic Dirac semimetal and a ferromagnetic insulator. Using finite-size scaling, we extract the critical exponents for the corresponding N=2 chiral Ising Gross-Neveu universality class: the inverse correlation length exponent ν-1=1.19±0.03, the order parameter anomalous dimension... 

    Effect of nano-particles and aminosilane interaction on the performances of cement-based composites: An experimental study

    , Article Construction and Building Materials ; Vol. 66 , 2014 , Pages 113-124 ; ISSN: 09500618 Hosseini, P ; Hosseinpourpia, R ; Pajum, A ; Khodavirdi, M. M ; Izadi, H ; Vaezi, A ; Sharif University of Technology
    Abstract
    The aim of the present study was to experimentally investigate the interaction between a low replacement ratio of different nano-particles (SiO2, Al2O3, clay, and CaCO3) and aminosilane in the matrices of cement paste and mortar. Results showed that the optimum content of aminosilane for improving the 28-day compressive strength of cement mortar was 0.75% (by weight of the total binder). The utilization of nano-SiO2 and nano-clay particles improved the strengths of the cement mortar containing hybrid systems of nano-particles/aminosilane at early (7 days) and middle curing ages (28 and 91 days). The 28-day compressive strength enhancement of cement mortar with hybrid systems of nano-SiO... 

    Pairing and non-Fermi liquid behavior in partially flat-band systems: Beyond nesting physics

    , Article Physical Review B ; Volume 101, Issue 1 , 2020 Sayyad, S ; Huang, E. W ; Kitatani, M ; Vaezi, M. S ; Nussinov, Z ; Vaezi, A ; Aoki, H ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    While many-body effects in flat-band systems are receiving renewed hot interest in condensed-matter physics for superconducting and topological properties as well as for magnetism, studies have primarily been restricted to multiband systems (with coexisting flat and dispersive bands). Here we focus on one-band systems where a band is "partially flat," comprising flat and dispersive portions in k space to reveal whether intriguing correlation effects can already arise on the simplest possible one-band level. For that, the two-dimensional repulsive Hubbard model is studied for two models having different flat areas in an intermediate-coupling regime with the dynamical mean-field theory... 

    Mechanical- activated phase formation of NiTi in the presence of nanoparticles [electronic resource]

    , Article Journal of Nano ; October 2013, Volume 08, Issue 05 Farvizi, M ; Ebadzadeh, T ; Vaezi, M. R ; Simchi, A. (Abdolreza) ; Kim, H. S ; Sharif University of Technology
    Abstract
    Effect of Al2O3 nanoparticles (80 nm) on the grain structure and phase formation in Ni-50Ti system during high-energy mechanical alloying (MA) was studied. While the formation of NiTi B2 phase occurs progressively during MA, it is shown that the hard inclusions cause abrupt phase formation at short milling times, particularly at higher nano-Al2O3 contents. High-resolution transmission electron microscopy showed significant grain refinement in the presence of alumina nanoparticles to sizes less than 10 nm, which precedes the formation of semicrystalline structure and reduces the diffusion length and thus accelerates the phase formation. The composite powder reached steady-state MA condition...