Loading...
Search for: zakerzadeh--m--r
0.007 seconds

    Position control of shape memory alloy actuator based on the generalized Prandtl-Ishlinskii inverse model

    , Article Mechatronics ; Volume 22, Issue 7 , 2012 , Pages 945-957 ; 09574158 (ISSN) Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    2012
    Abstract
    Hysteresis and significant nonlinearities in the behavior of Shape Memory Alloy (SMA) actuators encumber effective utilization of these actuator. Due to these effects, the position control of SMA actuators has been a great challenge in recent years. Literature review of the research conducted in this area shows that using the inverse of the phenomenological hysteresis models can compensate the hysteresis of these actuators effectively. But, inverting some of these models, such as Preisach model, is numerically a complex task. However, the generalized Prandtl-Ishlinskii model is analytically invertible, and therefore can be implemented conveniently as a feedforward controller for compensating... 

    Nonlinear analysis of a flexible beam actuated by a couple of active SMA wire actuators

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 25, Issue 3 , 2012 , Pages 249-264 ; 17281431 (ISSN) Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    2012
    Abstract
    There are two different ways of using SMA wires as actuators for shape control of flexible structures; which can be either embedded within the composite laminate or externally attached to the structure. Since the actuator can be placed at different offset distances from the beam, external actuators produce more bending moment and, consequently, considerable shape changes with the same magnitude of the actuation force comparing to the embedded type. Such a configuration also provides fast convection which is very important in shape control applications that require a high-frequency response of SMA actuators. Although combination and modeling of externally-attached SMA actuator wires and... 

    Multiphysics modeling of an MSMA-based clamped-clamped inertial energy harvester

    , Article Smart Materials and Structures ; Volume 28, Issue 3 , 2019 ; 09641726 (ISSN) Askari Farsangi, M. A ; Zakerzadeh, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In this paper, an alternative way of harvesting energy from ambient vibration is investigated through proposing a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). To this end, a clamped-clamped beam is coupled with MSMA units which are attached to its roots. A shock load is applied to a proof mass in the middle of the beam. The beam vibration causes longitudinal strain in the MSMAs and as a result the magnetic flux alters in the coils wounding around the MSMA units and produce an AC voltage. To have a reversible strain in MSMAs, a bias magnetic field is applied in transverse direction of the MSMA units. The large scale vibration of Euler-Bernoulli beam is modeled... 

    A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests

    , Article Scientia Iranica ; Volume 19, Issue 2 , Volume 19, Issue 2 , 2012 , Pages 249-257 ; 10263098 (ISSN) Sayyaadi, H ; Zakerzadeh, M. R ; Salehi, H ; Sharif University of Technology
    2012
    Abstract
    Recently, Shape Memory Alloys (SMAs) have been receiving more attention and further study, due to their ability to develop extremely large, recoverable strains and great forces. In this paper, three major models of SMA behavior, used in the literature, for studying the static performance of SMA components attributed to Tanaka, Liang and Rogers, and Brinson, have been analyzed and compared. The major differences and similarities between these models have also been emphasized and presented in this paper, based on the experimental data of the shape memory and superelastic behavior of an SMA wire. It is shown that these models all agree well in their prediction of the superelastic behavior of... 

    Hysteresis nonlinearity identification by using RBF neural network approach

    , Article Proceedings - 2010 18th Iranian Conference on Electrical Engineering, ICEE 2010, 11 May 2010 through 13 May 2010 ; 2010 , Pages 692-697 ; 9781424467600 (ISBN) Firouzi, M ; Bagheri Shouraki, S ; Zakerzadeh, M. R ; Sharif University of Technology
    Abstract
    In systems with hysteresis behavior like magnetic cores, Piezo actuators, Shape Memory Alloy(SMA), we essentially need an accurate modeling of hysteresis either for design or performance evaluation; also in some control applications accurate system identification is needed. One of the famous methods of Hysteresis modeling is Preisach model. In this numerical method hysteresis is modeled by linear combination of smaller hysteresis loops as an elemental operator and local memory. In this paper we discuss those Radial Base artificial neural networks (RBF) which provides natural settings in accordance with the Preisach model. It is shown that the proposed approach can represent hysteresis... 

    A novel inertial energy harvester using magnetic shape memory alloy

    , Article Smart Materials and Structures ; Volume 25, Issue 10 , 2016 ; 09641726 (ISSN) Askari Farsangi, M. A ; Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    This paper studies the output voltage from a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). The MSMA elements are attached to the root of a cantilever beam by means of two steps. In order to get electrical voltage, two coils are wound around the MSMAs and a shock load is applied to a tip mass at the end of the beam to have vibration in it. The beam vibration causes strain in the MSMAs along their longitudinal directions and as a result the magnetic flux alters in the coils. The change of magnetic flux in the surrounding coil produces an AC voltage. In order to predict the output voltage, the nonlinear governing equations of beam motion based on Euler-Bernoulli... 

    Transient growth of a micro-void in an infinite medium under thermal load with modified Zerilli–Armstrong model

    , Article Acta Mechanica ; Volume 227, Issue 4 , 2016 , Pages 943-953 ; 00015970 (ISSN) Baghani, M ; Eskandari, A. H ; Zakerzadeh, M. R ; Sharif University of Technology
    Abstract
    In this paper, the transient growth of a spherical micro-void under remote thermal load in an infinite medium is investigated. After developing the governing equations in the problem domain, the coupled nonlinear set of equations is solved through a numerical scheme. It is shown that a small cavity can grow rapidly as the temperature increases in a remote distance and may damage the material containing preexisting micro-voids. Conducting a transient thermal analysis simultaneously with a structural one reveals that the material may experience a peak in the radial stress distribution, which is five times larger compared to the steady-state one, and shows the importance of employing a... 

    Robust shape control of two SMA actuators attached to a flexible beam based on DK iteration

    , Article International Conference on Control, Automation and Systems ; 2012 , Pages 316-321 ; 15987833 (ISSN) ; 9781467322478 (ISBN) Alambeigi, F ; Zamani, A ; Vossoughi, G ; Zakerzadeh, M. R ; Sharif University of Technology
    2012
    Abstract
    There has been great demand for shape memory alloy (SMA) wires as actuators for shape control of flexible structures. The experimental setup of this study consists of a flexible beam actuated by two active SMA actuators. The input applied to the SMA actuator in this setup is electrical current while the output is the strain or position. To control strain of the actuator, the SMA wire is heated resistively in order to reach the desired temperature calculated by inverse of the phenomenological model. In heating the SMA wire resistively, the controllable quantity is the heat input to the wire via an applied current. In controller design, changes of physical properties of SMA wires and the... 

    Analytical investigation of composite sandwich beams filled with shape memory polymer corrugated core

    , Article Meccanica ; Volume 54, Issue 10 , 2019 , Pages 1647-1661 ; 00256455 (ISSN) Akbari Azar, S ; Baghani, M ; Zakerzadeh, M. R ; Shahsavari, H ; Sohrabpour, S ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Shape memory polymers (SMPs) are a class of smart materials which can recover their shape even after many shape changes in application of an external stimulus. In this paper, flexural behavior of a composite beam, constructed of a corrugated part filled with SMPs, is studied. This composite beam is applicable in sensor and actuator applications. Since the corrugated profiles display higher stiffness-to-mass ratio in the transverse to the corrugation direction, the beams with a corrugated part along the transverse direction are stiffer than ones with a corrugated part along the length. Employing a developed constitutive model for SMPs and the Euler–Bernoulli beam theory, the behavior of the... 

    A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications

    , Article Industrial Robot ; Volume 32, Issue 2 , 2005 , Pages 171-178 ; 0143991X (ISSN) Tavakoli, M ; Zakerzadeh, M. R ; Vossoughi, G. R ; Bagheri, S ; Sharif University of Technology
    2005
    Abstract
    Purpose - Aims to describe design, prototyping and characteristics of a pole climbing/manipulating robot with ability of passing bends and branches of the pole. Design/methodology/approach - Introducing a hybrid (parallel/serial) four degree of freedom (DOF) mechanism as the main part of the robot and also introduces a unique gripper design for pole climbing robots. Findings - Finds that a robot, with the ability of climbing and manipulating on poles with bends and branches, needs at least 4 DOFs. Also an electrical cylinder is a good option for climbing robots and has some advantages over pneumatic or hydraulic cylinders. Research limitations/implications - The robot is semi-industrial... 

    Design, modeling and kinematics analysis of a novel serial/parallel pole climbing and manipulating robot

    , Article Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis - 2004, Manchester, 19 July 2004 through 22 July 2004 ; Volume 2 , 2004 , Pages 399-408 ; 0791841731 (ISBN); 9780791841730 (ISBN) Vossoughi, G. R ; Bagheri, S ; Tavakoli, M ; Zakerzadeh, M. R ; Hosseinzadeh, M ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    This paper introduces a multi-task 4 DOF pole climbing/ manipulating robotic mechanism. A hybrid serial/parallel mechanism, providing 2 translations and 2 rotations, have been designed as the main part of the mechanism. This robotic mechanism can travel along tubular structures with bends, branches and step changes in cross section. It is also able to perform manipulation, repair and maintenance tasks after reaching the target point on the structure. After introducing the mechanism, a kinematics model and the forward and inverse kinematics as well as the workspace analysis of the mechanism are presented  

    Energy harvesting from structural vibrations of magnetic shape memory alloys

    , Article Applied Physics Letters ; Volume 110, Issue 10 , 2017 ; 00036951 (ISSN) Askari Farsangi, M. A ; Cottone, F ; Sayyaadi, H ; Zakerzadeh, M. R ; Orfei, F ; Gammaitoni, L ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    This letter presents the idea of scavenging energy from vibrating structures through magnetic shape memory alloy (MSMA). To this end, a MSMA specimen made of Ni50Mn28Ga22 is coupled to a cantilever beam through a step. Two permanent magnets installed at the top and bottom of the beam create a bias field perpendicular to the magnetization axis of the specimen. When vibrating the device, a longitudinal axial load applies on the MSMA, which in turn changes the magnetization, due to the martensitic variant reorientation mechanism. A pick-up coil wounded around the MSMA converts this variation into voltage according to the Faraday's law. Experimental test confirms the possibility of generating...