Loading...
Search for: absorption-capability
0.009 seconds

    Welding metallurgy of dissimilar AISI 430/DQSK steels resistance spot welds

    , Article Welding Journal ; Volume 94, Issue 6 , 2015 , Pages 203s-210s ; 00432296 (ISSN) Pouranvari, M ; Marashi, S. P. H ; Alizadeh Sh, M ; Sharif University of Technology
    American Welding Society  2015
    Abstract
    This paper addresses the microstructure and mechanical performance of dissimilar resistance spot welds between AISI 430 ferritic stainless steel and drawing quality special killed (DQSK) low-carbon steel. The mechanical properties of the welds are described by peak load, failure energy, and failure mode during the tensile-shear test. Phase transformations in the fusion zone (FZ) and heat-affected zone (HAZ) are analyzed. The main metallurgical features of the weldment are the formation of a dual-phase, ferrite-martensite microstructure in the FZ, grain growth and martensite formation in the HAZ of the ferritic stainless steel side, and martensitic and eutectoid transformations in the HAZ of... 

    Fracture toughness of martensitic stainless steel resistance spot welds

    , Article Materials Science and Engineering A ; Volume 680 , 2017 , Pages 97-107 ; 09215093 (ISSN) Pouranvari, M ; Sharif University of Technology
    Abstract
    The paper is focused on the strength and fracture toughness of AISI420 martensitic stainless steel resistance spot welds under the tensile-shear loading. The failure behavior of AISI420 spot welds was featured by quasi-cleavage interfacial failure with low load bearing capacity and weak energy absorption capability which was a function of the weld fusion microstructure, predominately carbon and chromium rich martensite plus δ-ferrite. Fracture toughness of the fusion zone proved to be the most important factor controlling the peak load of the spot welds made on AISI420 failed in interfacial mode. A geometry-independent fracture toughness of the weld nugget (c.a. 23 MPam0.5) was determined... 

    Nanotextured spikes of α-Fe2O3/NiFe2O4 composite for efficient photoelectrochemical oxidation of water

    , Article Langmuir ; Volume 34, Issue 12 , 2018 , Pages 3555-3564 ; 07437463 (ISSN) Hussain, S ; Tavakoli, M. M ; Waleed, A ; Virk, U. S ; Yang, S ; Waseem, A ; Fan, Z ; Nadeem, M. A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    We demonstrate for the first time the application of p-NiFe2O4/n-Fe2O3 composite thin films as anode materials for light-assisted electrolysis of water. The p-NiFe2O4/n-Fe2O3 composite thin films were deposited on planar fluorinated tin oxide (FTO)-coated glass as well as on 3D array of nanospike (NSP) substrates. The effect of substrate (planar FTO and 3D-NSP) and percentage change of each component (i.e., NiFe2O4 and Fe2O3) of composite was studied on photoelectrochemical (PEC) water oxidation reaction. This work also includes the performance comparison of p-NiFe2O4/n-Fe2O3 composite (planar and NSP) devices with pure hematite for PEC water oxidation. Overall, the nanostructured... 

    In situ postweld heat treatment of transformation induced plasticity steel resistance spot welds

    , Article Science and Technology of Welding and Joining ; Volume 23, Issue 1 , 2018 , Pages 71-78 ; 13621718 (ISSN) Sajjadi Nikoo, S ; Pouranvari, M ; Abedi, A ; Ghaderi, A. A ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Transformation-induced plasticity (TRIP) steel resistance spot welds are delicate to low-energy interfacial failure via crack propagation through martensitic fusion zone during cross-tension (CT) loading. This paper addresses the effect of three different types of in situ postweld heat treatment (PWHT) on the mechanical properties of TRIP steel resistance spot welds. Depending on the post weld second pulse current level, three different strengthening mechanisms were found including (i) martensite tempering with reduced hardness, (ii) refining of martensite packets with improved toughness and (iii) nugget re-melting/enlargement combined with possible reduction of grain boundary impurity... 

    Influence of In situ thermal processing strategies on the weldability of martensitic stainless steel resistance spot welds: effect of second pulse current on the weld microstructure and mechanical properties

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 50, Issue 11 , 2019 , Pages 5191-5209 ; 10735623 (ISSN) Aghajani, H ; Pouranvari, M ; Sharif University of Technology
    Springer Boston  2019
    Abstract
    Martensitic stainless steel (MSS) welds are notorious for their susceptibility to low-energy failure due to the formation of brittle martensitic structure in the fusion zone. The unique approach to enhance the mechanical properties of MSS resistance spot welds during both the tensile-shear and the cross-tension loading is to improve the fracture toughness of the fusion zone. In the present study, the effect of double-pulse welding on the microstructure-mechanical properties relationship of the AISI420 MSS resistance spot welds is investigated. Depending on the second pulse current level, various metallurgical phenomena was observed including (i) rapid tempering of martensite in the fusion... 

    Duplex stainless steel/martensitic steel dissimilar resistance spot welding: Microstructure-properties relationships

    , Article Welding Journal ; Volume 98, Issue 9 , 2019 , Pages 263S-272S ; 00432296 (ISSN) Sobhani, S ; Pouranvari, M ; Sharif University of Technology
    American Welding Society  2019
    Abstract
    This paper addresses the phase transformations and mechanical performance of dissimilar resistance spot welds between 2304 duplex stainless steel (DSS) and 1.2-GPa martensitic (MS) advanced high-strength steel (AHSS). The solidification mode and transformation path of the fusion zone (FZ) were analyzed. The key metallurgical feature of the FZ was the formation of a duplex microstructure consisting of delta ferrite and martensite. The FZ size at the sheet/sheet interface was the critical factor controlling the fraction of pullout failure during the partial thickness-partial pullout mode, the load-bearing capacity, and the energy absorption capability of the DSS/MS dissimilar resistance spot... 

    One-pot microwave synthesis of hierarchical C-doped CuO dandelions/g-C3N4 nanocomposite with enhanced photostability for photoelectrochemical water splitting

    , Article Applied Surface Science ; Volume 530 , 2020 Hosseini Hosseinabad, S. M ; Siavash Moakhar, R ; Soleimani, F ; Sadrnezhaad, S. K ; Masudy Panah, S ; Katal, R ; Seza, A ; Ghane, N ; Ramakrishna, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Cupric oxide (CuO) is a semiconductor of choice for photocathode in photoelectrochemical (PEC) applications due to its great sunlight absorption capability. However, photocorrosion is the main drawback of CuO. Herein, CuO/graphitic carbon nitride (g-C3N4) with a unique microstructure, enhanced PEC performance, and considerable photostability is synthesized under microwave irradiation. A facile, one-pot method is utilized to directly deposit the nanocomposite onto fluorine-doped tin oxide from a solution containing copper precursor and urea. Possible mechanism of CuO/g-C3N4 formation through this novel method is investigated. It is elucidated that controlled amounts of urea critically... 

    Strengthening and ductilization mechanisms of friction stir processed cast Mg–Al–Zn alloy

    , Article Materials Science and Engineering A ; Volume 781 , 2020 Jiryaei Sharahi, H ; Pouranvari, M ; Movahedi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    AZ91 alloy, the most widely used Mg casting alloy, exhibits low strength/ductility and weak energy absorption, which is a function of its large grain size and the presence of a coarse and continuous network of β-Mg17Al12 intermetallic compounds. This work demonstrated that friction stir processing (FSP) enables enhancement of strength and energy absorption capability of AZ91 alloy. The influence of FSP treatment on various potential strengthening mechanisms, including grain boundary, solid solution, and sub-micron particle strengthening mechanisms, was studied. It is identified that the grain boundary strengthening plays a significant contribution to the strength of the FSP treated AZ91. FSP... 

    Relationship between failure behaviour and weld fusion zone attributes of austenitic stainless steel resistance spot welds

    , Article Materials Science and Technology ; Volume 24, Issue 12 , 2008 , Pages 1506-1512 ; 02670836 (ISSN) Marashi, P ; Pouranvari, M ; Sanaee, M. H ; Abedi, A ; Abootalebi, H ; Goodarzi, M ; Sharif University of Technology
    2008
    Abstract
    Resistance spot welding was used to join austenitic stainless steel sheets. Mechanical properties of the spot welds were evaluated using tensile shear test. Mechanical behaviour was described by peak load, failure energy and failure mode. The relationship between weld fusion zone attributes and failure behaviour was studied. Generally, it was observed that increasing fusion zone size is accompanied by an increase in load carrying capacity and energy absorption capability. However, when expulsion occurs, despite almost constant weld fusion zone size, energy absorption capability reduces significantly due to increase in electrode indentation depth. Considering the failure location and failure...