Loading...
Search for: ac-ac-power-converters
0.009 seconds

    A new t-type direct AC/AC converter

    , Article 6th Annual International Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2015, 3 February 2015 through 4 February 2015 ; February , 2015 , Pages 247-252 ; 9781479976539 (ISBN) Khodabandeh, M ; Zolghadri, M. R ; Noroozi, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    In this paper a novel T type scheme for 1-phase direct ac/ac converters is proposed. In this topology, frequency changing takes place directly (without common DC voltage bus) through three converters that are connected in a T structure. Unity power factor and precise output voltage regulation is achieved through appropriate control of these three converters. H-bridge converters are implemented, as the basic unit, in each branches of T to make the proposed converter. The converter is controlled such that the average active power of each H-bridges remains zero. So capacitors are implemented in DC links of H-bridges. In comparison to conventional back-to-back converters, life time of each... 

    High-efficiency low-cost AC/AC buck converter with stability analysis

    , Article IET Power Electronics ; Volume 10, Issue 7 , 2017 , Pages 802-807 ; 17554535 (ISSN) Hajimoradi, M ; Mokhtari, H ; Sharif University of Technology
    Abstract
    The commutation issue is the most important limiting factor of expanding AC chopper applications, which in most cases are solved by employing snubber circuits, implementing sensor-based selective switching patterns and utilising resonant circuits. To overcome the commutation problem, this study proposes a novel non-resonant AC/AC buck converter with no snubber circuits and no sensor-based switching patterns. The introduced hardware configuration and the proposed control strategy provide a path for an inductive load current in all switching states. This converter offers higher reliability and efficiency as well as lower cost compared to the AC choppers with snubber circuits or voltage and... 

    AC voltage regulator based on AC/AC buck converter

    , Article 7th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2016, 16 February 2016 through 18 February 2016 ; 2016 , Pages 140-146 ; 9781509003754 (ISBN) Hajimoradi, M. R ; Mokhtari, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper introduces a high efficiency AC voltage regulator based on an AC/AC buck converter cascaded by a transformer in series with the input voltage. The AC/AC converter uses an overlap time in the gate signals to solve the commutation problem. Non-use of any snubber circuits and current sensors leads to lower cost, smaller size and simpler hardware. The converter generates only the compensation term which results in smaller switches and, thus, lower cost. Simulation and experimental results verify the performance of the proposed topology  

    Three-phase PFC rectifier with high efficiency and low cost for small PM synchronous wind generators

    , Article 7th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2016, 16 February 2016 through 18 February 2016 ; 2016 , Pages 302-307 ; 9781509003754 (ISBN) Rezazadeh, G ; Tahami, F ; Valipour, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Small Permanent Magnet Synchronous Generators (PMSG's) are widely used in low power wind turbines. In order to inject the electrical power, generated by PMSG, to the grid, a back-To-back AC/AC power electronic converter is required. In this paper, a novel low cost efficient AC/DC converter is proposed for rectifier stage to obtain the maximum power per ampere of PMSG by using Power Factor Correction method. The new structure is based on DCM SEPIC converter. Reducing the number of semi-conductor switches has decreased converter cost. Additionally, other advantages of this Converter are employing easy control method to obtain the maximum power per ampere and using Synchronous inductance of... 

    Stand alone performance of permanent magnet synchronous wind power generator with current source matrix converter

    , Article Electric Power Components and Systems ; Volume 43, Issue 8-10 , 2015 , Pages 1018-1027 ; 15325008 (ISSN) Hojabri, H ; Mokhtari, H ; Chang, L ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    A matrix converter is a voltage/current source AC/AC frequency converter. In grid-connected operation of a variable-speed permanent magnet synchronous wind power generator, the matrix converter is normally controlled as a voltage source converter. In this control method, the generator-side voltage is synthesized from the grid-side voltage source. However, in the stand-alone mode of operation, the grid-side stiff voltage source is not available, and the input filter of the matrix converter is unstable. In this article, a new control method is presented that controls a permanent magnet synchronous wind generator in a stand-alone mode with a matrix converter as a current source converter. The...