Loading...
Search for: acid-catalyst
0.005 seconds
Total 23 records

    DFT investigations for "Fischer" esterification mechanism over silica-propyl-SO3H catalyst: Is the reaction reversible?

    , Article Computational and Theoretical Chemistry ; Volume 1071 , 2015 , Pages 27-32 ; 2210271X (ISSN) Vafaeezadeh, M ; Fattahi, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    For the first time, the mechanism of Fischer esterification between acetic acid and ethanol over silica-functionalized propylsulfonic acid (silica-propyl-SO3H) catalyst was explored by means of computational modeling techniques. For this purpose, 6-edge-atom cage-like cluster comprising Si-O-Si sequences has been selected to represent the surface of the catalyst. The results indicate that the reaction goes through concerted transition states. In all optimized structures no proton (H+) transfer occurs from catalyst to the substrates and the role of the catalyst is via the activation of the substrates through the formation of strong hydrogen bonds (H-bonds). Furthermore, the energetic diagram... 

    Cysteic acid grafted to magnetic graphene oxide as a promising recoverable solid acid catalyst for the synthesis of diverse 4H-chromene

    , Article Scientific Reports ; Volume 10, Issue 1 , December , 2020 Matloubi Moghaddam, F ; Eslami, M ; Hoda, G ; Sharif University of Technology
    Nature Research  2020
    Abstract
    4H-chromenes play a significant role in natural and pharmacological products. Despite continuous advances in the synthesis methodology of these compounds, there is still a lack of a green and efficient method. In this study, we have designed cysteic acid chemically attached to magnetic graphene oxide (MNPs·GO-CysA) as an efficient and reusable solid acid catalyst to synthesize 4H-chromene skeletons via a one-pot three components reaction of an enolizable compound, malononitrile, an aldehyde or isatin, and a mixture of water–ethanol as a green solvent. This new heterogeneous catalyst provides desired products with a good to excellent yield, short time, and mild condition. This procedure... 

    Magnetic nanoparticles coated by acidic functionalized poly(amidoamine) dendrimer: Effective acidic organocatalyst

    , Article Catalysis Communications ; Volume 28 , 2012 , Pages 86-89 ; 15667367 (ISSN) Pourjavadi, A ; Hosseini, S. H ; Hosseini, S. T ; Aghayeemeibody, S. A ; Sharif University of Technology
    2012
    Abstract
    A novel magnetic Br∅nsted acid catalyst was synthesized based on growing poly(amidoamine) dendrimers on the surface of magnetic nanoparticles. After the dendronizing process, the MNP coated PAMAM was functionalized by chlorosulfuric acid to form an acid catalyst. Because of dendrimer coating of MNPs, catalyst shows good loading level of acidic groups on the surface. Also zwitterion nature of catalyst surface improves the catalytic activity. This new catalyst is proven to be highly effective in the synthesis of α-aminophosphonate compounds in a green way  

    Multi-Layer functionalized poly(ionic liquid) coated magnetic nanoparticles: Highly recoverable and magnetically separable brønsted acid catalyst

    , Article ACS Catalysis ; Volume 2, Issue 6 , 2012 , Pages 1259-1266 ; 21555435 (ISSN) Pourjavadi, A ; Hosseini, S. H ; Doulabi, M ; Fakoorpoor, S. M ; Seidi, F ; Sharif University of Technology
    2012
    Abstract
    A functionalized poly(ionic liquid) coated magnetic nanoparticle (Fe 3O 4@PIL) catalyst was successfully synthesized by polymerization of functionalized vinylimidazolium in the presence of surface modified magnetic nanoparticles. The resulting heterogeneous catalyst is shown to be an efficient acidic catalyst for synthesis of 1,1-diacetyl from aldehydes under solvent free conditions and room temperature in high yields. Also, the catalyst shows good activity for the deprotection reaction of acylals. After completion of reaction, the catalyst was simply recovered by an external conventional magnet and recycled without significant loss in the catalytic activity. Because of the polymer layers... 

    Two-stage thermocatalytic upgrading of fuel oil to olefins and fuels over a nanoporous hierarchical acidic catalyst

    , Article Petroleum Science and Technology ; Volume 37, Issue 16 , 2019 , Pages 1910-1916 ; 10916466 (ISSN) Ghashghaee, M ; Shirvani, S ; Ghambarian, M ; Eidi, A ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    A two-stage thermocatalytic upgrading process using a novel catalyst was investigated to produce light olefins and liquid fuels from fuel oil. The upgraded oil from the first thermal stage demonstrated lower viscosity and higher crackability compared to the virgin feedstock. In the next step, the vapor-phase catalytic cracking of the upgraded fraction was implemented over a novel nanoporous composite catalyst, characterized by the XRD, FTIR, NH3- TPD, and N2 physisorption techniques. In total, more than 55 wt% of light olefins, particularly propylene (25.5 wt%) together with 25.4 wt% and 32.5 wt% of gasoline and diesel fuel were obtained in this process. © 2019, © 2019 Taylor & Francis... 

    , M.Sc. Thesis Sharif University of Technology Ragheb Sarand, Akram (Author) ; Mahmoodi Hashemi, Mohammed (Supervisor) ; Rajab Zade, Ghadir (Supervisor)
    Abstract
    TiO2/SiO2/HPAsnanocompositeswas prepared by the sol-gel technique at room tempareture and used as the heterogeneous catalysts for the acylation of alcohols employing acetic anhydrid under solvent-free conditions at room tempareture. It was found that the catalytic activity of TiO2/SiO2/HPAs, in all cases of HPAs, was much higher than that of TiO2/SiO2. The most catalytic activity was obtained by TiO2/SiO2/H14NaP5W30O110 which completed the acylation reaction of benzyl alcohol at 1h. Examining the various concentrations of H14NaP5W30O110 in the composite, 9% w/w concentration of TiO2/SiO2/HPAs showed maximum catalytic activity, and by increasing the HPA concentration, activity remains... 

    Synthesis of β-Amino Ketones Using Titania Based on Solid Acid as A Catalyst

    , M.Sc. Thesis Sharif University of Technology Samet, Masoud (Author) ; Mahmoudi Hashemi, Mohammad (Supervisor)
    Abstract
    Enanthioselective synthesis of biological molecules are so important in synthetic chemistry, and because of their biological activities, β-amino carbonyl compounds have earned so much attention in this area of chemistry. Mannich reaction is a classical method for synthesis of these molecules. The Mannich reaction is a three-component reaction between an enolizable CH-acidic carbonyl compound, an amine, and an aldehyde producing β-amino carbonyl compounds. But acidic or basic difficult circumstances, long reaction time, low yield and enantioselectivity, are the drawbacks of classical methods. In this project, we used titania-based solid acid as an enantioselective catalyst to overcome these... 

    Synthesis of Heteropolyacid Catalysts Stabilized on Clay for Conversion of Carbohyderates into 5-Hydroxymethylfurfural

    , M.Sc. Thesis Sharif University of Technology Saghandali, Fardin (Author) ; Kazemeini, Mohammad (Supervisor) ; Sadjadi, Samaheh (Supervisor)
    Abstract
    Three Keggin-type heteropolyacids were impregnated upon halloysite to produce heterogeneous acidic catalysts for synthesizing 5-hydroxymethylfurfural (5-HMF). Comparing the effectiveness of variously prepared catalysts in producing 5-HMF from fructose revealed the important role of halloysite in the final catalyst's acidic properties and performance in the reaction of halloysite-supported silicotungstic acid. Adjusting the reaction parameters for obtaining optimal results for the catalyst of choice was conducted via Response Surface Methodology and it was found that use of catalyst with 11 wt.% active ingredient at 125 °C in DMSO solvent yielded the target compound with 99.5% after 43 min.... 

    Gadolinium triflate immobilized on magnetic nanocomposites as recyclable Lewis acid catalyst for acetylation of phenols

    , Article Nanoscience and Nanotechnology Letters ; Vol. 6, issue. 4 , 2014 , p. 309-313 Rafiaei, S. M ; Kim, A ; Shokouhimehr, M ; Sharif University of Technology
    Abstract
    The acetylation of phenols with acetic anhydride proceeded in excellent yields when it was catalyzed by gadolinium triflate immobilized on magnetically recyclable nanocomposites. This heterogeneous catalyst provided high catalytic activity with low loading level (1 mol%), because the Lewis acid catalyst was grafted on the surface of the nanocomposites. The catalysts were also easily recovered from the reaction mixture using a magnet and reused for six consecutive cycles  

    Reduction of Organic Dyes in Water Using MOFS and Their Composites

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Alireza (Author) ; Kazemeini, Mohammad (Supervisor) ; Sadjadi, Samahe (Co-Supervisor) ; Khorasheh, Farhad (Co-Supervisor)
    Abstract
    A triple photocatalytic composite of biochar, metal-organic framework and phosphomolybdic acid was prepared through solvothermal treatment of iron (III) chloride hexahydrate, terephthalic acid, lavandulifolia-derived biochar and phosphomolybdic acid. The composite was thoroughly characterized and utilized for photodegradation of organic dyes under visible light irradiation. Investigations of reaction variables confirmed that, the highest yield of 96.2% for a cationic Rhodamine-B (RhB) dye was achieved at ambient temperature when using 0.07 g of catalyst at pH of 7 and a dye concentration of 10 ppm. The activity of the composite was superior compared to its individual components implying... 

    Hydro-purification of crude terephthalic acid using palladium catalyst supported on multi-wall carbon nanotubes

    , Article Journal of Industrial and Engineering Chemistry ; 2015 ; ISSN: 1226086X Tourani, S ; Khorasheh, F ; Rashidi, A. M ; Safekordi, A. A ; Sharif University of Technology
    Abstract
    Palladium catalysts supported on functionalized multi-wall carbon nanotubes were synthesized for hydro-purification of crude terephthalic acid containing 2100ppm 4-carboxybenzaldehyde (4-CBA) as impurity. PdCl2 and Pd(OAc)2 were used as precursors. Palladium loadings were 0.05 to 0.6wt.% with catalysts reduced at 200 to 400°C. Catalysts prepared from both precursors with least 0.3wt.% palladium resulted in 99%+ removal of 4-CBA. The most desired selectivity was obtained for the catalyst with PdCl2 as precursor, reduction temperature of 300°C, and palladium loading of 0.3wt.%. This catalyst had slightly better performance than the commercial catalyst (0.5wt.% of palladium on activated carbon)... 

    Design of silica supported task-specific ionic liquid catalyst system for oxidation of cyclohexene to adipic acid with 30% H 2O 2

    , Article Catalysis Communications ; Volume 26 , September , 2012 , Pages 54-57 ; 15667367 (ISSN) Vafaeezadeh, M ; Hashemi, M. M ; Shakourian Fard, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    1-Butyl-3-methylimidazolium tungstate ([BMIm] 2WO 4) ionic liquid supported onto silica sulphamic acid demonstrated desirable performance for oxidation of cyclohexene to adipic acid. Simple experimental procedure, easy product isolation, catalyst recovery and reusability are some attractive features of this protocol  

    Application of response surface methodology and central composite rotatable design for modeling and optimization of sulfuric and nitric leaching of spent catalyst

    , Article Russian Journal of Non-Ferrous Metals ; Volume 56, Issue 2 , 2015 , Pages 155-164 ; 10678212 (ISSN) Niaki, R ; Abazarpoor, A ; Halali, M ; Maarefvand, M ; Ebrahimi, G ; Sharif University of Technology
    Abstract
    The optimization of leaching parameters for the Ni recovery of the used catalyst was developed using response surface methodology. The relationship between the Ni recoveries, and four main leaching parameters, temperature, acid concentration, leaching time and particle size were presented as empirical model equations. The predicted values of nickel recoveries were found to be in a reasonable agreement with the experimental values, with R2 as correlation factor being 0.9669 and 0.9869 for sulfuric and nitric acids, respectively. The model equations were then optimized using the quadratic programming method to maximize nickel recovery. The optimum conditions were found to be 103.4°C... 

    Hydro-purification of crude terephthalic acid using palladium catalyst supported on multi-wall carbon nanotubes

    , Article Journal of Industrial and Engineering Chemistry ; Volume 28 , August , 2015 , Pages 202-210 ; 1226086X (ISSN) Tourani, S ; Khorasheh, F ; Rashidi, A. M ; Safekordi, A. A ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2015
    Abstract
    Palladium catalysts supported on functionalized multi-wall carbon nanotubes were synthesized for hydro-purification of crude terephthalic acid containing 2100ppm 4-carboxybenzaldehyde (4-CBA) as impurity. PdCl2 and Pd(OAc)2 were used as precursors. Palladium loadings were 0.05 to 0.6wt.% with catalysts reduced at 200 to 400°C. Catalysts prepared from both precursors with least 0.3wt.% palladium resulted in 99%+ removal of 4-CBA. The most desired selectivity was obtained for the catalyst with PdCl2 as precursor, reduction temperature of 300°C, and palladium loading of 0.3wt.%. This catalyst had slightly better performance than the commercial catalyst (0.5wt.%... 

    Crosslinked poly(ionic liquid) as high loaded dual acidic organocatalyst

    , Article Journal of Molecular Catalysis A: Chemical ; Volume 365 , 2012 , Pages 55-59 ; 13811169 (ISSN) Pourjavadi, A ; Hosseini, S. H ; Soleyman, R ; Sharif University of Technology
    Abstract
    A dual acidic heterogeneous organocatalyst was synthesized by copolymerization of acidic ionic liquid monomer (vinyl-3-(3-sulfopropyl) imidazolium hydrogen sulfate [VSim][HSO 4]) and ionic liquid crosslinker (1,4-butanediyl-3,3′-bis-l-vinyl imidazolium dihydrogen sulfate). The resulting ionic heterogeneous catalyst is shown to be an efficient dual acidic organocatalyst for synthesis of dihydropyrimidines using the Biginelli synthetic route under mild reaction conditions in high yields. Since monomers make the catalyst bed, crosslinked poly(ionic liquid) will have high loading level of acidic groups comparing to other heterogeneous acid catalysts. Despite of conventional heterogeneous ionic... 

    Effect of hydrogen bonds on pK a values: Importance of networking

    , Article Journal of the American Chemical Society ; Volume 134, Issue 25 , 2012 , Pages 10646-10650 ; 00027863 (ISSN) Shokri, A ; Abedin, A ; Fattahi, A ; Kass, S. R ; Sharif University of Technology
    2012
    Abstract
    The pK a of an acyclic aliphatic heptaol ((HOCH 2CH 2CH(OH)CH 2) 3COH) was measured in DMSO, and its gas-phase acidity is reported as well. This tertiary alcohol was found to be 10 21 times more acidic than tert-butyl alcohol in DMSO and an order of magnitude more acidic than acetic acid (i.e., pK a = 11.4 vs 12.3). This can be attributed to a 21.9 kcal mol -1 stabilization of the charged oxygen center in the conjugate base by three hydrogen bonds and another 6.3 kcal mol -1 stabilization resulting from an additional three hydrogen bonds between the uncharged primary and secondary hydroxyl groups. Charge delocalization by both the first and second solvation shells may be used to facilitate... 

    Synthesis of Reduced Graphene Oxide-Carbon Nanotubes (rGO-CNT) Composite and Its Use As a Novel Catalyst Support for Hydro-Purification of Crude Terephthalic Acid

    , Article Industrial and Engineering Chemistry Research ; Volume 54, Issue 31 , 2015 , Pages 7591-7603 ; 08885885 (ISSN) Tourani, S ; Rashidi, A. M ; Safekordi, A. A ; Aghabozorg, H. R ; Khorasheh, F ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Palladium nanocatalysts supported on reduced graphene oxide (rGO), multi walled carbon nanotubes (MWCNT), and rGO/CNT composite were synthesized by a wet impregnation method using PdCl2 as a precursor. Palladium loading was 0.3 wt %, and the catalysts were reduced at 300°C. The catalysts were characterized by inductively coupled plasma, Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy, temperatue-programmed reduction, temperatue-programmed desorption, and Raman spectroscopy. The performance of the catalysts was investigated for hydro-purification of crude terephthalic acid (CTA) containing... 

    Modeling of catalyst deactivation in zeolite-catalyzed alkylation of isobutane with 2-butene

    , Article Chemical Engineering Science ; Volume 65, Issue 2 , 2010 , Pages 645-650 ; 00092509 (ISSN) Hamzehlouyan, T ; Kazemeini, M ; Khorasheh, F ; Sharif University of Technology
    Abstract
    The deactivation of solid acid catalysts in liquid phase alkylation of isobutane with 2-butene was investigated. Since under liquid phase conditions the alkylation reaction is severely diffusion limited, effects of diffusion on the rate of reaction and deactivation pathways were considered. In the present work, an attempt has been made to implement more appropriate assumptions in order to properly model catalyst deactivation in a mixed reactor. Accordingly, spatial variation of diffusivity in the pores of the catalyst was considered as a function of time on stream. The effect of the pore mouth plugging was also investigated and it was found that this phenomenon had a pronounced effect on the... 

    Comparison and optimization of conjugated linoleic acid production by Lactobacillus plantarum and Lactobacillus plantarum subsp. plantarum

    , Article Scientia Iranica ; Volume 24, Issue 3 , 2017 , Pages 1272-1280 ; 10263098 (ISSN) Kouchak Yazdi, Z ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Conjugated Linoleic Acid (CLA) was produced from castor oil using washed cells of Lactobacillus plantarum PTCC 1058 and Lactobacillus plantarum subsp. plantarum PTCC1745 as the catalyst. Under the optimal reaction conditions, the washed cells of Lactobacillus plantarum PTCC1058 produced 1661.26 mg of CLA/L reaction mixture (36% yield of production) from 4.6 mg/ml of castor oil after using 15% (w/v) cell for 121 h. The resulting CLA was a mixture of two CLA isomers, cis-9, trans-11 (or trans-9, cis-11)-octadecadienoic acid (CLA1, 44% of total CLA) and trans-10, cis-12-octadecadienoic acid (CLA2, 46% of total CLA). The total production of CLA is extracellular in all of the reactions performed... 

    A new eco-friendly and efficient mesoporous solid acid catalyst for the alkylation of phenols and naphthols under microwave irradiation and solvent-free conditions

    , Article Scientia Iranica ; Volume 16, Issue 2 C , 2009 , Pages 81-88 ; 10263098 (ISSN) Matloubi Moghaddam, F ; Akhlaghi, M ; Hojabri, L ; Dekamin, M. G ; Sharif University of Technology
    2009
    Abstract
    The catalytic activity of a mixture of ZnCl2: AlCl3 supported on silica gel was evaluated for the alkylation of phenols with benzyl alcohol, tret-butyl alcohol and styrene under microwave irradiation and solvent-free conditions. The catalyst preparation method, its characterization and reusability, were reported. The effect of the phenol to benzyl alcohol ratio and the time of reaction on the phenol conversion and distribution of products was investigated. A conversion percentage up to 97% was achieved when hydroquinone was used. A selective ortho- directed alkylation for phenol, α-naphthol and β-naphthol was observed. © Sharif University of Technology, December 2009