Loading...
Search for: acoustic-wave-transmission
0.006 seconds

    Experimental characterization of response of lean premixed low-swirl flames to acoustic excitations

    , Article International Journal of Spray and Combustion Dynamics ; Volume 5, Issue 4 , 2013 , Pages 309-328 ; 17568277 (ISSN) Bagheri Sadeghi, N ; Shahsavari, M ; Farshchi, M ; Sharif University of Technology
    2013
    Abstract
    Acoustically excited lean premixed low-swirl flames were experimentally investigated to gain a better understanding of detrimental thermoacoustic couplings which can occur in applications like low-NOx gas turbines. Propane-air flames were imaged and analyzed at equivalence ratios of 0.6 to 0.8, mean flow velocities of 3.5 to 5.5 m/s and excitation frequencies of 135 Hz to 555 Hz. It was observed that with increasing excitation frequency, mean flame shape gradually became wider up to a Strouhal number of about 2.5 and then slowly reverted back to the unexcited flame shape. Such large changes in mean flame shape and possibly flow field under acoustic excitations can significantly affect flame... 

    Dynamic analysis of human ear during sound transmission

    , Article 3rd international Conference on Manufacturing Science and Engineering, ICMSE 2012, Xiamen, 27 March 2012 through 29 March 2012 ; Volume 472-475 , 2012 , Pages 1215-1219 ; 10226680 (ISSN); 9783037853702 (ISBN) Ghafari, A. S ; Zahiri, S ; Fujian University of Technology; Xiamen University; Fuzhou University; Huaqiao University; University of Wollongong ; Sharif University of Technology
    2012
    Abstract
    The aim of the present research is to simulate dynamic behavior of the human auditoria peripherals during sound transmission using the equivalent six-degrees-of-freedom lumped parameter mathematical model. Transmissibility analysis was employed to get a better insight into the sound transmission from tympanic membrane to malleus, incus, stapes, and cochlea. Furthermore, transmissibility from each member to corresponding adjacent member was carried out to functional analysis of the human ear. Simulation study illustrated that the results are in agreement with the experimental results published in the literature, and the proposed model provides more information in the dynamic analysis of... 

    Low swirl premixed methane-air flame dynamics under acoustic excitations

    , Article Physics of Fluids ; Volume 31, Issue 9 , 2019 ; 10706631 (ISSN) Shahsavari, M ; Farshchi, M ; Chakravarthy, S. R ; Chakraborty, A ; Aravind, I. B ; Wang, B ; Sharif University of Technology
    American Institute of Physics Inc  2019
    Abstract
    In this study, simultaneous particle image velocimetry and planar laser induced fluorescence of hydroxyl radical, chemiluminescence imaging, and hot-wire measurements are utilized to study reacting low swirl flow dynamics under low to high amplitude acoustic excitations. Results show that a temporal weak recirculation zone exists downstream of the flame, which is enlarged in size under acoustic excitations. Investigations show that temporal behaviors of this recirculation zone play a significant role in flame movements and instabilities. As the acoustic wave amplitude increases, the flame lift-off distance changes drastically, resulting in flame instabilities (flashback and blowout) during... 

    An experimental investigation of hydrodynamic performance, cavitation, and noise of a normal skew B-series marine propeller in the cavitation tunnel

    , Article Ocean Engineering ; Volume 238 , 2021 ; 00298018 (ISSN) Ebrahimi, A ; Razaghian, A. H ; Tootian, A ; Seif, M. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the hydrodynamic performance, cavitation inception, and acoustic performance of a 5-bladed B-series propeller are experimentally investigated in the Sharif University of Technology cavitation tunnel. For hydrodynamic performance, thrust, torque, and efficiency of the propeller model were measured in open water tests. In the cavitation study, in addition to blade cavitation, tip vortex cavitation was also observed, and the cavitation bucket diagram was extracted in different advance coefficients. Finally, for the acoustic analysis of the propeller, the emitted noise in the cavitation tunnel was recorded using two hydrophones according to the recommended procedures of the... 

    On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    , Article Journal of Sound and Vibration ; Vol. 333, issue. 22 , October , 2014 , p. 5746-5761 Rajabi, M ; Behzad, M ; Sharif University of Technology
    Abstract
    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others...