Loading...
Search for: active-species
0.008 seconds

    Naphtha HDS over Co-Mo/Graphene catalyst synthesized through the spray pyrolysis technique

    , Article Journal of Analytical and Applied Pyrolysis ; Volume 123 , 2017 , Pages 144-151 ; 01652370 (ISSN) Hajjar, Z ; Kazemeini, M ; Rashidi, A ; Soltanali, S ; Bahadoran, F ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Co-Mo/Graphene composite synthesized for the first time through the spray pyrolysis method and applied as an HDS catalyst to produce a sulfur free Naphtha feed. The major advantage of the spray pyrolysis technique was its concurrent capability of the in-situ and simultaneous Co-Mo deposition upon the graphene. The produced material was characterized through the XRD, BET-BJH, FTIR and Raman spectroscopy as well as; the NH3-TPD, TPR, TEM and FESEM techniques. The prepared catalyst showed unique properties such as; high degree of total acidity of 5.1 (vs. the usual 0.2–2.0) mmole NH3/g-cat and a relatively high surface area of 705 vs. 189 m2/g of the commercial material. Furthermore, the... 

    Photocatalytic decomposition of direct red 16 and kinetics analysis in a conic body packed bed reactor with nanostructure titania coated Raschig rings

    , Article Chemical Engineering Journal ; Volume 151, Issue 1-3 , 2009 , Pages 295-301 ; 13858947 (ISSN) Saien, J ; Asgari, M ; Soleymani, A. R ; Taghavinia, N ; Sharif University of Technology
    2009
    Abstract
    A conic body packed bed reactor, internally irradiated with a UV-C lamp and equipped with circulating upflow stream was employed to investigate the decomposition of a widely used azo dye, direct red 16, in water. The synthesized nanostructure TiO 2 photocatalyst particles were immobilized on the surface of transparent Raschig ring packings. Solutions with initial concentration of 30 mg L -1 of dye, within the range of typical concentration in textile waste waters, were treated under the mild operating conditions of natural pH of 6.75 and temperature of 25 °C. Investigations on the active species showed that hydroxyl radicals play the major role in the process, providing a perfect degradation... 

    How does the axial ligand of cytochrome p450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?

    , Article Chemistry - A European Journal ; Volume 15, Issue 22 , 2009 , Pages 5577-5587 ; 09476539 (ISSN) De Visser, S. P ; Tahsini, L ; Nam, W ; Sharif University of Technology
    2009
    Abstract
    The catalytic activity of highvalent iron-oxo active species of heme enzymes is known to be dependent on the nature of the axial ligand trans to the iron-oxo group. In a similar fashion, experimental studies on iron-oxo porphyrin biomimetic systems have shown a significant axial ligand effect on ethylbenzene hydroxylation, with an axial acetonitrile ligand leading to phenyl hydroxylation products and an axial chloride anion giving predominantly benzyl hydroxylation products. To elucidate the fundamental factors that distinguish this regioselectivity reversal in iron-oxo porphyrin catalysis, we have performed a series of density functional theory calculations on the hydroxylation of... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of...