Loading...
Search for:
actuating-voltage
0.006 seconds
Effects of structural configuration on vibration control of smart laminated beams under random excitations
, Article Journal of Mechanical Science and Technology ; Volume 24, Issue 5 , 2010 , Pages 1119-1125 ; 1738494X (ISSN) ; Sharif University of Technology
Abstract
The influence of structural configuration on vibration responses of smart laminated beams under random loading is studied. The effect of laminate configurations and locations of sensors/actuators in the smart system is also investigated. The layer-wise approximation for displacement and electric potential is utilized to construct the finite element model. The closed-loop control response is determined through an optimal control algorithm based on the Linear Quadratic Regulator (LQR). The correlation coefficient between the input random force and the applied actuating voltage for various configurations is also computed. It is revealed that for softer configurations, the correlation...
Effect of geometric nonlinearity on dynamic pull-in behavior of coupled-domain microstructures based on classical and shear deformation plate theories
, Article European Journal of Mechanics, A/Solids ; Volume 28, Issue 5 , 2009 , Pages 916-925 ; 09977538 (ISSN) ; Moghimi Zand, M ; Ahmadian, M. T ; Sharif University of Technology
2009
Abstract
This paper investigates the dynamic pull-in behavior of microplates actuated by a suddenly applied electrostatic force. Electrostatic, elastic and fluid domains are involved in modeling. First-order shear deformation plate theory and classical plate theory are used to model the geometrically nonlinear microplates. The equations of motion are descritized by the finite element method. The effects of nonlinearity, fluid pressure, initial stress and different geometric parameters on dynamic behavior are examined. In addition, the influences of initial stress and actuation voltage on oscillatory behavior of microplates are evaluated. © 2009 Elsevier Masson SAS. All rights reserved