Loading...
Search for: actuator-failure
0.004 seconds

    Robust adaptive fault-tolerant control for leader-follower flocking of uncertain multi-agent systems with actuator failure

    , Article ISA Transactions ; Volume 71 , 2017 , Pages 227-234 ; 00190578 (ISSN) Yazdani, S ; Haeri, M ; Sharif University of Technology
    Abstract
    In this work, we study the flocking problem of multi-agent systems with uncertain dynamics subject to actuator failure and external disturbances. By considering some standard assumptions, we propose a robust adaptive fault tolerant protocol for compensating of the actuator bias fault, the partial loss of actuator effectiveness fault, the model uncertainties, and external disturbances. Under the designed protocol, velocity convergence of agents to that of virtual leader is guaranteed while the connectivity preservation of network and collision avoidance among agents are ensured as well. © 2017 ISA  

    Adaptive finite-time fault-tolerant controller for a class of uncertain MIMO nonlinear switched systems subject to output constraints and unknown input nonlinearities

    , Article Nonlinear Analysis: Hybrid Systems ; Volume 35 , February , 2020 Moradvandi, A ; Malek, S. A ; Shahrokhi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this work, design of an adaptive finite-time fault-tolerant controller for a class of uncertain multi-input multi-output (MIMO) nonlinear switched systems with unmodeled dynamics subject to asymmetric time-varying output constraints and unknown faulty input nonlinearities has been addressed. The number of actuator faults can be infinite. In addition, the proposed control algorithm can cope with different unknown types of input nonlinearities namely, saturation, dead zone, backlash, and hysteresis. Actuator faults and input nonlinearities can be different in different modes. To estimate the system uncertainties, neural networks (NNs) have been employed and the unmodeled dynamics has been... 

    Adaptive actuator failure compensation on the basis of contraction metrics

    , Article IEEE Control Systems Letters ; Volume 6 , 2022 , Pages 1376-1381 ; 24751456 (ISSN) Boveiri, M ; Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This letter develops an adaptive actuator failure compensation method for nonlinear systems with unmatched parametric uncertainty based on contraction metrics. The proposed method, which is constructed by benefiting from the recent achievements on contraction metrics based adaptive control techniques, ensures the closed-loop stability and asymptotic tracking of the desired trajectory in the presence of actuator failures. In particular, a sufficient convex condition is derived for constructing a valid metric, by which a quadratic program-based controller is obtained to determine the inputs of the actuators. The introduced method is more general than the common adaptive actuator failure... 

    Fault-tolerant adaptive fractional controller design for incommensurate fractional-order nonlinear dynamic systems subject to input and output restrictions

    , Article Chaos, Solitons and Fractals ; Volume 157 , 2022 ; 09600779 (ISSN) Pishro, A ; Shahrokhi, M ; Sadeghi, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this article, a fault-tolerant adaptive neural network fractional controller has been proposed for a class of uncertain multi-input single-output (MISO) incommensurate fractional-order non-strict nonlinear systems subject to five different types of unknown input nonlinearities, infinite number of actuators failures and arbitrary independent time-varying output constraints. The barrier Lyapunov function (BLF)-based backstepping technique and fractional Lyapunov direct method (FLDM) have been used to design the controller and establish system stability. To tackle the incommensurate derivatives problem, in each step of the backstepping technique, an appropriate Lyapunov function has been... 

    Minimizing the Error of Set Point Tracking in MIMO Plants with Broken Actuators

    , M.Sc. Thesis Sharif University of Technology Farahani Fard, Jaber (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    Fault occurrence is an inevitable problem in industrial plants. These faults have numerous types. Some common kinds of faults are faults in actuators, faults in system dynamics, and faults in sensors. In many cases it is not possible to change or repair the broken part immediately. On the other hand, it is not reasonable to shut-down the whole system due to a minor failure. Therefore we should take a measure to have the best output possible in a faulty plant. In this thesis we have proposed a new static compensator by which we distribute the contribution of the faulty actuator among the other ones. At the end we evaluate the method by means of simulations  

    Control of Fractional Order Systems with Input Constraints

    , M.Sc. Thesis Sharif University of Technology Pishro, Abouzar (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Considering input constraints is an essential task in the controller design. In this thesis, a controller has been designed for incommensurate fractional order nonlinear systems in the nonstrict feedback form subject to unknown dynamics, input nonlinearity and actuator failures. The Lyapunov direct method and the backstepping technique have been used to design the controller and stability analysis. The number of actuator faults can be infinite. In addition, the proposed control algorithm can cope with different types of input nonlinearities namely, saturation, dead zone, dead zone-saturation, backlash and hysteresis. To estimate the system uncertainties, neural networks have been employed... 

    Design of an Adaptive Controller for Uncertain Fractional-order Systems Subject to Actuator Failure

    , M.Sc. Thesis Sharif University of Technology Dolatabadi, Shayesteh (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    The objective of this research is to design an adaptive controller for a class of fractional-order nonlinear systems in the strict-feedback form with unmodeled dynamics. Actuator saturation and actuator fault are also considered. All of the system states are assumed to be measurable, and all the sensors can be faulty. Fractional-order systems are chosen because, in the modeling of physical systems, the fractional-order calculus is often preferable to the classical integer-order calculus. The controller is designed by using the backstepping design technique. The fuzzy logic systems are used to eliminate the problem of "explosion of complexity" in the conventional backstepping method and also... 

    Analysis and Design of Adaptive Control Systems Based on Contraction Theory

    , M.Sc. Thesis Sharif University of Technology Boveiri, Mohammmad (Author) ; Tavazoei, Mohammad Saleh (Supervisor)
    Abstract
    This thesis deals with output feedback control design, adaptive output feedback control design, and adaptive actuator compensation for input-affine nonlinear systems on the basis of contraction metrics. In Section I, some necessary backgrounds on Riemannian geometry and contraction analysis are presented. In Section II, firstly, an observer for the considered class of nonlinear systems is proposed. Then, it is shown that by combining the introduced observer with state-feedback controllers in a suitable way, output tracking can be achieved. Moreover, the obtained results are extended to be used for adaptive output feedback stabilization of uncertain nonlinear systems. The introduced... 

    Control Design for Nonlinear Stochastic Processes in the Presence of Input Constraint

    , M.Sc. Thesis Sharif University of Technology Mozaffari Bezi, Ali (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Due to the presence of a random variable in the process dynamics or due to the presence of measurement noise, many processes have stochastic in nature. Behaviors of these processes are different from the deterministic processes and therefore their controllers are also different. The aim of this research is to design adaptive controller for stochastic processes with a non-strict feedback structure and in the presence of input constraints. Also, the considered system has other limitations such as the unmeasured states, actuator failure, unknown dynamics and fixed time stability is desired. The input limitation can be caused by the limitation of the final control element, because the input... 

    Adaptive fuzzy decentralized control for a class of MIMO large-scale nonlinear state delay systems with unmodeled dynamics subject to unknown input saturation and infinite number of actuator failures

    , Article Information Sciences ; Volume 475 , 2019 , Pages 121-141 ; 00200255 (ISSN) Moradvandi, A ; Shahrokhi, M ; Malek, S. A ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    This paper addresses design of an adaptive fuzzy decentralized fault-tolerant controller for a class of uncertain multi-input multi-output (MIMO) large-scale nonlinear systems with unmodeled dynamics subject to unknown state time-varying delay, external disturbances, unknown input saturation and actuator faults. It is shown that the proposed fault-tolerant control (FTC) scheme can handle infinite number of actuator failures including partial and total loss of effectiveness. System uncertainties have been approximated by the fuzzy logic systems (FLSs). To cope with the unknown state time-varying delay, the Razumikhin lemma has been utilized and unmodeled dynamics has been tackled by... 

    Event-triggered adaptive control of a class of nonlinear systems with non-parametric uncertainty in the presence of actuator failures

    , Article Transactions of the Institute of Measurement and Control ; Volume 43, Issue 12 , 2021 , Pages 2628-2636 ; 01423312 (ISSN) Ghazisaeedi, H. R ; Tavazoei, M. S ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    This paper deals with event-triggered adaptive tracking control of a class of nonlinear systems with non-parametric uncertainty and unknown control input direction, in the presence of actuator faults. The proposed event-triggered control method takes advantage of the radial basis function neural networks to approximate the non-parametric uncertainties. Moreover, this control method benefits from the Nussbaum-type function-based adaptation laws for simultaneously dealing with unknown input direction and actuator faults. Numerical simulation results confirm the efficiency of the proposed control method to confront the above mentioned limitations. © The Author(s) 2021  

    Adaptive asymptotic tracking control of uncertain fractional-order nonlinear systems with unknown quantized input and control directions subject to actuator failures

    , Article JVC/Journal of Vibration and Control ; Volume 28, Issue 19-20 , 2022 , Pages 2625-2641 ; 10775463 (ISSN) Sabeti, F ; Shahrokhi, M ; Moradvandi, A ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    This article addresses an adaptive backstepping control design for uncertain fractional-order nonlinear systems in the strict-feedback form subject to unknown input quantization, unknown state-dependent control directions, and unknown actuator failure. The system order can be commensurate or noncommensurate. The total number of failures is allowed to be infinite. The Nussbaum function is used to deal with the problem of unknown control directions. Compared with the existing results, the control gains can be functions of states and the knowledge of quantization parameters and characteristics of the actuator failure are unknown. By applying the backstepping control approach based on the... 

    Controller Design in the Presence of Actuator Failure

    , M.Sc. Thesis Sharif University of Technology Morodvandi, Ali (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    In control systems, actuators are subjected to faults during operation. In the present work, a controller for nonlinear systems under several restrictions and in the presence of actuator failure has been proposed. The controller is designed for large-scale multi-input multi-output (MIMO) uncertain nonlinear systems subject to unmodeled dynamics, unknown state dependent control gain functions, unknown state time varying delay, unknown subsystems interactions, unknown external disturbances and input nonlinearity. The backlash has been assumed for input nonlinearity. No restriction has been considered regarding the number of actuator failure. The backstepping technique has been applied for...