Loading...
Search for: adaptive-finite-element
0.012 seconds

    Three-Dimensional Cohesive Modeling of Curved Crack Growth in Quasi-brittle Material Using Adaptive Technique

    , M.Sc. Thesis Sharif University of Technology Sharifi, Mahdi (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Prediction of crack growth is one of the greatest achievements of continuum mechanics in 20th century. However, in spite of Griffith’s achievements, nowadays lots of subjects remain unchallenged in the field of Fracture Mechanics. Concrete and asphalt concrete are two of the most popular material in civil engineering and crack growth prediction in these materials are very important. Cohesive crack model is one of the models which is used for prediction of crack growth in quasi-brittle material such as concrete and it has been used widely in recent years because of simplicity and good agreement with experiment.The aim of this thesis is three-dimensional static and dynamic cohesive modeling of... 

    Simulation of Crack Propagation in Ductile Metals Under Dynamic Cyclic Loading by Adaptive Finite Element Method and Continuum Damage Mechanics Model

    , M.Sc. Thesis Sharif University of Technology Eghbalian, Mahdad (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Crack nucleation and growth is unfavorable in many industrial and every day-life cases. designers’ effort is to prevent or delay it by taking into account safety and maintenance considerations; but in some industrial operations, the main target is to form a crack in a part to achieve a particular shape; and designers’ duty is to control the way it happens. so numerical modeling of this phenomena has many useful applications in preventing the structures’ failure and designing the production processes for industrial goods; and because of this, a great attention has been paid to it in the last two decades. a situation usually encountered in every day-life is the earthquake excitation which... 

    Finite Element Modeling of Cohesive Crack Growth Using Adaptive Mesh Refinement

    , M.Sc. Thesis Sharif University of Technology Majd Ardakani, Keivan (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Under Linear Elastic Fracture Mechanics (LEFM) assumptions, the stress at the crack tip is theoretically infinite. Clearly all materials have a finite strength, thus there will always be a plastified zone around the crack tip. If the size of plastic zone is not small compared to the crack size, then linear elastic assumptions are not applicable and a nonlinear model must be used. This damaged zone is referred to as a plastic zone for metals, and a fracture process zone for cementitious materials and ceramics. In this regard a discrete extrinsic cohesive crack model with bilinear traction separation constitutive law, i.e. softening function, is employed and crack propagation is investigated.... 

    3D Modeling of damage growth and crack initiation using adaptive finite element technique

    , Article Scientia Iranica ; Volume 17, Issue 5 A , 2010 , Pages 372-386 ; 10263098 (ISSN) Moslemi, H ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In this paper, the continuum damage mechanics model originally proposed by Lemaitre (Journal of Engineering Materials and Technology. 1985; 107: 83-89) is presented through an adaptive finite element method for three-dimensional ductile materials. The macro-crack initiation-propagation criterion is used based on the distribution of damage variable in the continuum damage model. The microcrack closure effect is incorporated to simulate the damage evolution more realistic. The Zienkiewicz-Zhu posteriori error estimator is employed in conjunction with a weighted Superconvergence Patch Recovery (SPR) technique at each patch to improve the accuracy of error estimation and data transfer process.... 

    3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method

    , Article Engineering Fracture Mechanics ; Volume 76, Issue 11 , 2009 , Pages 1703-1728 ; 00137944 (ISSN) Moslemi, H ; Khoei, A. R ; Sharif University of Technology
    2009
    Abstract
    In this paper, an adaptive finite element analysis is presented for 3D modeling of non-planar curved crack growth. The fracture mechanical evaluation is performed based on a general technique for non-planar curved cracks. The Schollmann's crack kinking criterion is used for the process of crack propagation in 3D problems. The Zienkiewicz-Zhu error estimator is employed in conjunction with a weighted SPR technique at each patch to improve the accuracy of error estimation. Applying the proposed technique to 3D non-planar curved crack growth problems shows significant improvements particularly at the boundaries and near crack tip regions. Several numerical examples are presented to illustrate... 

    Modelling of Elastic and Plastic Deformation Fracture and Crack Propagation in 3D Problems Using Adaptive Finite Element Method

    , Ph.D. Dissertation Sharif University of Technology Moslemi, Hamid (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Numerical methods in fracture and crack propagation problems usually involve high computational costs. Adaptive finite element method is one of the techniques which can be used to simulate the crack propagation with an acceptable accuracy. In this thesis, various constitutive models are implemented for simulation of fracture, including the linear elastic fracture mechanics, cohesive zone model and continuum damage mechanics. The fracture mechanical evaluation is performed on a general integral technique for non-planar curved cracks in LEFM. In the second model, a bilinear cohesive zone model is applied to implement the traction-separation law. The Lemaitre damage model is employed and the... 

    Numerical simulation of ductile crack growth under cyclic and dynamic loading with a damage-viscoplasticity model

    , Article Engineering Fracture Mechanics ; Volume 99 , 2013 , Pages 169-190 ; 00137944 (ISSN) Khoei, A. R ; Eghbalian, M ; Azadi, H ; Saffar, H ; Sharif University of Technology
    2013
    Abstract
    In this paper, the crack propagation in ductile materials is simulated under cyclic and dynamic loading. The adaptive finite element method is used to model the discontinuity due to crack propagation. The ductile fracture assumptions and continuum damage mechanics are utilized to model the material rupture behavior. Moreover both the rate-independent and rate-dependent constitutive equations are elaborated and the crack closure effect and combined hardening model are discussed in addition to some aspects of finite element implementation. Finally, a comparison is performed between the numerical simulation results and those of experiments to illustrate the robustness of proposed computational... 

    Three-dimensional cohesive fracture modeling of non-planar crack growth using adaptive FE technique

    , Article International Journal of Solids and Structures ; Volume 49, Issue 17 , September , 2012 , Pages 2334-2348 ; 00207683 (ISSN) Khoei, A. R ; Moslemi, H ; Sharifi, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, the three-dimensional adaptive finite element modeling is presented for cohesive fracture analysis of non-planer crack growth. The technique is performed based on the Zienkiewicz-Zhu error estimator by employing the modified superconvergent patch recovery procedure for the stress recovery. The Espinosa-Zavattieri bilinear constitutive equation is used to describe the cohesive tractions and displacement jumps. The 3D cohesive fracture element is employed to simulate the crack growth in a non-planar curved pattern. The crack growth criterion is proposed in terms of the principal stress and its direction. Finally, several numerical examples are analyzed to demonstrate the... 

    3D modeling of damage growth and ductile crack propagation using adaptive FEM technique

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI ; 2011 , Pages 996-1007 ; 9788489925731 (ISBN) Moslemi, H ; Khoei, A.R ; Sharif University of Technology
    Abstract
    In this paper, the continuum damage mechanics model originally proposed by Lemaitre [1] is presented through an adaptive finite element method for three-dimensional ductile materials. The macro-crack initiation-propagation criterion is used based on the distribution of damage variable in the continuum damage model. The micro-crack closure effect is incorporated to simulate the damage evolution more realistic. The Zienkiewicz-Zhu posteriori error estimator is employed in conjunction with a weighted superconvergence patch recovery (SPR) technique at each patch to improve the accuracy of error estimation and data transfer process. Finally, the robustness and accuracy of proposed computational... 

    Dynamic responses of a rectangular plate under motion of an oscillator using a semi-analytical method

    , Article JVC/Journal of Vibration and Control ; Volume 17, Issue 9 , 2011 , Pages 1310-1324 ; 10775463 (ISSN) Ghafoori, E ; Kargarnovin, M. H ; Ghahremani, A. R ; Sharif University of Technology
    Abstract
    A semi-analytical method is presented to calculate the dynamic responses of a rectangular plate due to a moving oscillator. In previous analytical solutions of the moving oscillator problem, the elastic distributed structure has usually been modeled by an elastic beam structure. This restrictive assumption is removed in this study by assuming a general plate as two-dimensional elastic distributed structure. The method can be applied for any arbitrary path on the plate. A combination of the Fourier and Laplace transformation as well as the convolution theorem is used to solve the governing differential equations of the problem. A modified integration technique is then presented to solve the... 

    Modeling of cohesive crack growth using an adaptive mesh refinement via the modified-SPR technique

    , Article International Journal of Fracture ; Volume 159, Issue 1 , 2009 , Pages 21-41 ; 03769429 (ISSN) Khoei, A. R ; Moslemi, H ; Majd Ardakany, K ; Barani, O. R ; Azadi, H ; Sharif University of Technology
    2009
    Abstract
    In this paper, an adaptive finite element procedure is presented in modeling of mixed-mode cohesive crack propagation via the modified superconvergent path recovery technique. The adaptive mesh refinement is performed based on the Zienkiewicz-Zhu error estimator. The weighted-SPR recovery technique is employed to improve the accuracy of error estimation. The Espinosa-Zavattieri bilinear cohesive zone model is applied to implement the traction-separation law. It is worth mentioning that no previous information is necessary for the path of crack growth and no region of the domain is necessary to be filled by the cohesive elements. The maximum principal stress criterion is employed for... 

    An efficient stress recovery technique in adaptive finite element method using artificial neural network

    , Article Engineering Fracture Mechanics ; Volume 237 , October , 2020 Khoei, A. R ; Moslemi, H ; Seddighian, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, an efficient stress recovery technique is presented to estimate the recovered stress field at the nodal points. The feed–forward back–propagation multilayer perceptron (MLP) neural network approach is employed to improve the accuracy of the stress recovery method. An automatic adaptive mesh refinement is performed based on a–posteriori Zienkiewicz–Zhu error estimation method. The proposed technique is employed to recover the stress field accurately in the regions with a high stress gradient where the conventional recovery techniques are not able to improve the stress fields efficiently due to the singular behavior of problem. Finally, several numerical examples are solved to...