Loading...
Search for: adaptive-fuzzy-control
0.006 seconds

    Efficient Algorithm for Two-wheeled Self Balancing Robot Control Using Fuzzy Methods

    , M.Sc. Thesis Sharif University of Technology Hamid, Heydar (Author) ; Bagheri Shouraki, Saeed (Supervisor)
    Abstract
    The inverted pendulum system has been considered as a well known nonlinear system for testing control algorithms. A two-wheeled balancing robot is a mobile inverted pendulum system whose structure is a combination of a wheeled mobile robot and an inverted pendulum system. Published article studied the Robot in different views. Some papers define it as a vehicle, some other try to model and so many use it to determine the control system. This thesis presents design of fuzzy logic controller for a two-wheeled balancing robot using fuzzy methodes. First we have designed a classic fuzzy logic controller to control both of balancing and Trajectory control of robot. The Fuzzy controller was... 

    Observer-based adaptive fuzzy controller for nonlinear systems with unknown control directions and input saturation

    , Article Fuzzy Sets and Systems ; May , 2016 ; 01650114 (ISSN) Askari, M. R ; Shahrokhi, M ; Khajeh Talkhoncheh, M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    This paper addresses design of an observer-based adaptive fuzzy controller for a class of single-input-single-output (SISO) nonlinear systems with unknown dynamics subject to input nonlinearity and unknown direction. The proposed controller is singularity free. A high-gain observer is designed to estimate the unmeasured states, and the Lipschitz condition for proving boundedness of the estimated states is relaxed. The Nussbaum function is used to handle the unknown virtual control directions and the backstepping technique has been applied for controller design. It is proved that all closed loop signals are semi-globally uniformly ultimately bounded (SGUUB) and the output tracking error... 

    Design and Implementation of Control Algorithm to Carry a load By Segway Robot

    , M.Sc. Thesis Sharif University of Technology Jokar, Ehsan (Author) ; Bagheri Shouraki, Saeed (Supervisor)
    Abstract
    Recently, many investigations have been devoted to problems of controlling mobile-wheeled inverted pendulum (MWIP) models, which have been widely applied in the field of autonomous robotics and intelligent vehicles. The MWIP models are not only of theoretical interest but are also of practical interest. Many practical systems have been implemented that were based on the MWIP models, such as the JOE, the Segway, etc. Among these applications, the Segway PT has been a popular personal transporter, since it was invented in 2002 Such systems are characterized by the ability to balance on its two wheels and spin on the spot. This additional maneuverability allows them to easily navigate on... 

    Observer-based adaptive fuzzy controller for nonlinear systems with unknown control directions and input saturation

    , Article Fuzzy Sets and Systems ; Volume 314 , 2017 , Pages 24-45 ; 01650114 (ISSN) Askari, M. R ; Shahrokhi, M ; Khajeh Talkhoncheh, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This paper addresses design of an observer-based adaptive fuzzy controller for a class of single-input–single-output (SISO) nonlinear systems with unknown dynamics subject to input nonlinearity and unknown direction. The proposed controller is singularity free. A high-gain observer is designed to estimate the unmeasured states, and the Lipschitz condition for proving boundedness of the estimated states is relaxed. The Nussbaum function is used to handle the unknown virtual control directions and the backstepping technique has been applied for controller design. It is proved that all closed loop signals are semi-globally uniformly ultimately bounded (SGUUB) and the output tracking error... 

    Observer-based adaptive fuzzy controller for uncertain non-strict state-delayed nonlinear systems subject to input and output constraints

    , Article Journal of the Franklin Institute ; Volume 357, Issue 12 , 2020 , Pages 7483-7514 Askari, M. R ; Shahrokhi, M ; Khajeh Talkhoncheh, M ; Moradvandi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper addresses the design of an observer-based adaptive fuzzy controller for a class of uncertain non-strict nonlinear systems subject to time-delays, unknown direction, input saturation, and output constraint. The Barrier Lyapunov Function (BLF) has been utilized to keep the system output inside the desired bounds. The state and input delays have been handled by using the Lyapunov–Krasovskii function and including an integral compensator term in the controller, respectively. A state observer has been designed to estimate the unmeasured states. The Lipschitz condition for proving boundedness of the estimated states has been relaxed. The Nussbaum gain function has been exploited to deal... 

    Controller Design in the Presence of Actuator Failure

    , M.Sc. Thesis Sharif University of Technology Morodvandi, Ali (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    In control systems, actuators are subjected to faults during operation. In the present work, a controller for nonlinear systems under several restrictions and in the presence of actuator failure has been proposed. The controller is designed for large-scale multi-input multi-output (MIMO) uncertain nonlinear systems subject to unmodeled dynamics, unknown state dependent control gain functions, unknown state time varying delay, unknown subsystems interactions, unknown external disturbances and input nonlinearity. The backlash has been assumed for input nonlinearity. No restriction has been considered regarding the number of actuator failure. The backstepping technique has been applied for... 

    A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems

    , Article IEEE Transactions on Industrial Electronics ; Volume 59, Issue 8 , 2012 , Pages 3124-3134 ; 02780046 (ISSN) Ranjbar-Sahraei, B ; Shabaninia, F ; Nemati, A ; Stan, S. D ; Sharif University of Technology
    IEEE  2012
    Abstract
    In this paper, a novel decentralized adaptive control scheme for multiagent formation control is proposed based on an integration of artificial potential functions with robust control techniques. Fully actuated mobile agents with partially unknown models are considered, where an adaptive fuzzy logic system is used to approximate the unknown system dynamics. The robust performance criterion is used to attenuate the adaptive fuzzy approximation error and external disturbances to a prescribed level. The advantages of the proposed controller can be listed as robustness to input nonlinearity, external disturbances, and model uncertainties, and applicability on a large diversity of autonomous... 

    Indirect adaptive fuzzy sliding mode control of 3D inverted pendulum

    , Article 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation, KBEI 2017 ; Volume 2018-January , 2018 , Pages 0919-0924 ; 9781538626405 (ISBN) Nikzad Goltapeh, A ; Shokouhyan, M. R ; Motekallem, A ; Sharifi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, an indirect adaptive fuzzy sliding mode controller for a 3-dimensional inverted pendulum as a fully actuated MIMO system is developed. This inverted pendulum, has four degrees of freedom and equations of the system are nonlinear and non-minimum phase. Thus, control of this system is a challenging issue. Accordingly, in this work, general basis of sliding mode control method with reaching rules is expressed for this system, then the fuzzy control theory is combined, and modeling uncertainties of the system are estimated by universal fuzzy approximation theory. Controller parameters are updated by a defined adaptation law to decrease the tracking error of the inverted pendulum.... 

    Adaptive fuzzy backstepping approach for temperature control of continuous stirred tank reactors

    , Article Fuzzy Sets and Systems ; Volume 160, Issue 12 , 2009 , Pages 1804-1818 ; 01650114 (ISSN) Salehi, S ; Shahrokhi, M ; Sharif University of Technology
    2009
    Abstract
    In this paper, an adaptive fuzzy controller, based on backstepping technique, has been proposed for temperature control of a general class of continuous stirred tank reactors (CSTRs). Using the observability concept, an adaptive fuzzy controller using temperature measurement has been designed. A fuzzy logic system is used to estimate the concentration dependent terms and other unknown system parameters appearing in the control law. It is shown that the closed loop system is asymptotically stable and influences of minimum approximation error and external disturbance on the L2 norm of the output tracking error can be attenuated arbitrarily. The performance of the proposed controller has been...