Search for: adhesive-cells
0.006 seconds
Total 43 records

    The effect of the physical properties of the substrate on the kinetics of cell adhesion and crawling studied by an axisymmetric diffusion-energy balance coupled model

    , Article Soft Matter ; Volume 11, Issue 18 , Mar , 2015 , Pages 3693-3705 ; 1744683X (ISSN) Samadi Dooki, A ; Shodja, H. M ; Malekmotiei, L ; Sharif University of Technology
    Royal Society of Chemistry  2015
    In this paper an analytical approach to study the effect of the substrate physical properties on the kinetics of adhesion and motility behavior of cells is presented. Cell adhesion is mediated by the binding of cell wall receptors and substrate's complementary ligands, and tight adhesion is accomplished by the recruitment of the cell wall binders to the adhesion zone. The binders' movement is modeled as their axisymmetric diffusion in the fluid-like cell membrane. In order to preserve the thermodynamic consistency, the energy balance for the cell-substrate interaction is imposed on the diffusion equation. Solving the axisymmetric diffusion-energy balance coupled equations, it turns out that... 

    Biodegradable polyurethane acrylate/HEMA-grafted nanodiamond composites with bone regenerative potential applications: Structure, mechanical properties and biocompatibility

    , Article RSC Advances ; Volume 6, Issue 11 , 2016 , Pages 8743-8755 ; 20462069 (ISSN) Alishiri, M ; Shojaei, A ; Abdekhodaie, M. J ; Sharif University of Technology
    Royal Society of Chemistry 
    The present study demonstrates HEMA-grafted nanodiamond (ND-HEMA)/acrylate-terminated polyurethane-acrylate diluents (APUA) composites as promising materials for bone implant applications. Neat APUA and APUA composites containing ND-HEMA at different loadings up to 2 wt% were prepared by an in situ polymerization method. Morphological analysis demonstrated that ND-HEMAs were actually in the form of tightly bound aggregates which led to formation of big agglomerates at a concentration of 2 wt%. It was also suggested that ND-HEMAs were preferentially localized in the continuous soft domain of APUA; however it interacted by both soft and hard domains. Moreover, ND-HEMAs caused considerable... 

    Polyrotaxane capped quantum dots as new candidates for cancer diagnosis and therapy

    , Article Journal of Nanostructured Polymers and Nanocomposites ; Volume 7, Issue 1 , 2011 , Pages 18-31 ; 17904439 (ISSN) Sarabi, R. S ; Sadeghi, E ; Hosseinkhani, H ; Mahmoudi, M ; Kalantari, M ; Adeli, M ; Sharif University of Technology
    Molecular self-assembly of cadmium selenide quantum dots-end-capped polyrotaxane hybrid nanostructures (PRCdSe QDs) was led to a new type of core-shell hybrid nanomaterials consisting of cadmium selenide quantum dot (CdSe QDs) core and polyrotaxane shell (PR@QDs). Structure of PR@QDs was characterized using various techniques. It has been observed that the size of PR@QDs was between 20-25 nm in which diameter of core and thickness of shell were between 15-20 and 2-3 nm, respectively. Short-term in vitro cytotoxicity tests, using MTT (3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, were conducted on mouse tissue connective fibroblast adhesive cell line (L929) in order to... 

    Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: Mechanical properties and in vitro cell responses

    , Article Materials and Design ; Volume 88 , 2015 , Pages 924-931 ; 02641275 (ISSN) Tamjid, E ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Design and development of biodegradable scaffolds with highly uniform and controlled internal structure that stimulate tissue regeneration are the focus of many studies. The aim of this work is to apply a modified three-dimensional (3D) printing process to fabricate polymer-matrix composites with controlled internal architecture. Computationally-designed plaster molds with various pore sizes in the range of 300-800. μm were prepared by employing 3D printing of a water-based binder. The molds were converted to ε-polycaprolactone (PCL) and PCL/bioactive glass (BG) composite scaffolds by solvent casting and freeze drying methods. Optical and electron microscopy studies revealed that the pore... 

    Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 69 , 2016 , Pages 301-310 ; 09284931 (ISSN) Mahdieh, Z ; Bagheri, R ; Eslami, M ; Amiri, M ; Shokrgozar, M. A ; Mehrjoo, M ; Sharif University of Technology
    Elsevier Ltd 
    Recently, biodegradable polymers such as starch based blends have been well renowned in the biomedical field. Studies have considered them suitable for bone scaffolds, bone cements, tissue engineering scaffolds, drug delivery systems and hydrogels. The aim of this study was to synthesize nanocomposite biomaterial consisting a blend of thermoplastic starch and ethylene vinyl alcohol as the polymer matrix, and nano-structured forsterite as the ceramic reinforcing phase for bone tissue engineering applications. Furthermore, vitamin E was applied as a thermal stabilizer during melt compounding. Extrusion and injection molding were incorporated for melt blending and shaping of samples,... 

    Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application

    , Article Biologicals ; Volume 48 , 2017 , Pages 39-46 ; 10451056 (ISSN) Nasiri, B ; Mashayekhan, S ; Sharif University of Technology
    Academic Press  2017
    Due to the avascular nature of articular cartilage, damaged tissue has little capacity for spontaneous healing. Three-dimensional scaffolds have potential for use in tissue engineering approach for cartilage repair. In this study, bovine cartilage tissue was decellularized and chemically crosslinked hybrid chitosan/extracellular matrix (ECM) scaffolds were fabricated with different ECM weight ratios by simple freeze drying method. Various properties of chitosan/ECM scaffolds such as microstructure, mechanical strength, swelling ratio, and biodegradability rate were investigated to confirm improved structural and biological characteristics of chitosan scaffolds in the presence of ECM. The... 

    In vitro biological outcome of laser application for modification or processing of titanium dental implants

    , Article Lasers in Medical Science ; Volume 32, Issue 5 , 2017 , Pages 1197-1206 ; 02688921 (ISSN) Hindy, A ; Farahmand, F ; Tabatabaei, F. S ; Sharif University of Technology
    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords “titanium dental implants,” “laser,” “biocompatibility,” and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium... 

    On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 121-131 ; 09284931 (ISSN) Mahmoudi, N ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Nanofibrous structures that mimic the native extracellular matrix and promote cell adhesion have attracted considerable interest for biomedical applications. In this study, GO-modified nanofibrous biopolymers (GO) were prepared by electrospinning blended solutions of chitosan (80 vol%), polyvinyl pyrrolidone (15 vol%), polyethylene oxide (5 vol%) containing GO nanosheets (0–2 wt%). It is shown that GO nanosheets significantly change the conductivity and viscosity of highly concentrated chitosan solutions, so that ultrafine and uniform fibers with an average diameter of 60 nm are spinnable. The GO-reinforced nanofibers with controlled pore structure exhibit enhanced elastic modulus and... 

    Conductive nanofiber scaffold for bone tissue engineering

    , Article 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, 30 November 2017 through 1 December 2017 ; 2018 ; 9781538636091 (ISBN) Rasti Boroojeni, F ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    In order to fabricate nanofiber scaffold for bone tissue engineering, electrospinning technique was employed. This technique produces nanofiberous scaffold supporting cell adhesion, migration, and proliferation. Here, we developed a novel conductive scaffold from poly-caprolactone, gelatin, and poly aniline/graphene nanoparticles. In this study, co-electrospinning was utilized to fabricate composite electrospun scaffold. The effect of polyaniline/graphene (PAG) nanoparticles on the mechanical properties and electrical conductivity of this hybrid scaffold was investigated. The result showed that PAG nanoparticles enbance both mechanical properties and electrical conductivity of the scaffolds.... 

    A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip

    , Article Biomicrofluidics ; Volume 12, Issue 2 , April , 2018 ; 19321058 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Thin porous membranes are important components in a microfluidic device, serving as separators, filters, and scaffolds for cell culture. However, the fabrication and the integration of these membranes possess many challenges, which restrict their widespread applications. This paper reports a facile technique to fabricate robust membrane-embedded microfluidic devices. We integrated an electrospun membrane into a polydimethylsiloxane (PDMS) device using the simple plasma-activated bonding technique. To increase the flexibility of the membrane and to address the leakage problem, the electrospun membrane was fabricated with the highest weight ratio of PDMS to polymethylmethacrylate (i.e., 6:1... 

    Construction of scaffolds composed of acellular cardiac extracellular matrix for myocardial tissue engineering

    , Article Biologicals ; Volume 53 , 2018 , Pages 10-18 ; 10451056 (ISSN) Esmaeili Pourfarhangi, K ; Mashayekhan, S ; Ghanbari Asl, S ; Hajebrahimi, Z ; Sharif University of Technology
    Academic Press  2018
    High rates of mortality and morbidity stemming from cardiovascular diseases unveil extreme limitations in current therapies despite enormous advances in medical and pharmaceutical sciences. Following myocardial infarction (MI), parts of myocardium undergo irreversible remodeling and is substituted by a scar tissue which eventually leads to heart failure (HF). To address this issue, cardiac patches have been utilized to initiate myocardial regeneration. In this study, a porous cardiac patch is fabricated using a mixture of decellularized myocardium extracellular matrix (ECM) and chitosan (CS). Results of rheological measurements, SEM, biodegradation test, and MTT assay showed that the... 

    Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review

    , Article Polymer Reviews ; Volume 58, Issue 1 , 2018 , Pages 164-207 ; 15583724 (ISSN) Hajiali, F ; Tajbakhsh, S ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Polycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants and controlled drug release applications. However, when it comes to tissue engineering, PCL suffers from some shortcomings such as slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of calcium phosphate-based ceramics and bioactive glasses into PCL has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity that are suitable for bone tissue engineering. This review presents a comprehensive study on recent advances in the fabrication and properties of... 

    Evaluation of bioactivity and biocompatibility of silk fibroin/TiO2 nanocomposite

    , Article Journal of Medical and Biological Engineering ; Volume 38, Issue 1 , February , 2018 , Pages 99-105 ; 16090985 (ISSN) Johari, N ; Madaah Hosseini, H. R ; Taromi, N ; Arasteh, S ; Kazemnejad, S ; Samadi Kuchaksaraei, A ; Sharif University of Technology
    Springer Berlin Heidelberg  2018
    Biodegradable polymer/bioceramic nanocomposites are osteoconductive and can accelerate healing of bone tissue. In this research, silk fibroin (SF)/titanium dioxide (TiO2) nanocomposites were synthesized using different concentrations of TiO2 nanoparticles (0, 5, 10, 15 and 20 wt%). The SF/TiO2 nanocomposites were studied in terms of bioactivity and biocompatibility. The in vitro assessment of osteoblasts compatibility indicated that SF inclusion rendered nanocomposite biocompatible whereas presence of TiO2 nanoparticles allowed the cells to adhere and grow on nanocomposite surface and enhanced the bioactivity of the composite. © 2017, Taiwanese Society of Biomedical Engineering  

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; 2020 Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    Bioinspired multifunctional TiO2 hierarchical micro/nanostructures with tunable improved bone cell growth and inhibited bacteria adhesion

    , Article Ceramics International ; Volume 46, Issue 7 , 2020 , Pages 9669-9679 Rahnamaee, S. Y ; Bagheri, R ; Vossoughi, M ; Ahmadi Seyedkhani, S ; Samadikuchaksaraei, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Two main origins of failure for hard tissue replacements are structural loosening and prosthetic implant infections (PIIs). Bioinspired multifunctional TiO2 hierarchical micro/nanostructures of conical-shaped TiO2 (CTO), regular TiO2 nanotubes (RTO) and irregular TiO2 nanotubes (ITO) with tunable improved cell growth and inhibited bacteria adhesion were synthesized. CTO and ITO samples indicated superhydrophilicity with contact angles of less than 5°. The MTT assay demonstrated excellent biological performance for RTO and CTO sample with 98.1% and 103.1% of cell viability, respectively. The bridging force for osteoblast cell attachment onto the synthesized porous coatings was presented as a... 

    Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering

    , Article International Journal of Pharmaceutics ; Volume 602 , 2021 ; 03785173 (ISSN) Ghanbari, M ; Salavati Niasari, M ; Mohandes, F ; Sharif University of Technology
    Elsevier B.V  2021
    Stem cell treatment is promising in the various disorders treatment, but its effect is confined by the adverse conditions in the damaged tissues. The utilization of hydrogels has been suggested as a procedure to defeat this issue by developing the engraftment and survival of injected stem cells. Specifically, injectable hydrogels have drawn much attention due to their shape adaptability, ease of use, and the capability to reach body parts that are hard to access. In this study, the thermosensitive injectable hydrogels based on oxidized alginate, gelatin, and carbon nitride quantum dots (CNQDs) have been fabricated for tissue engineering. The mechanical characteristics of the nanocomposite... 

    PLGA/TiO2 nanocomposite scaffolds for biomedical applications: Fabrication, photocatalytic, and antibacterial properties

    , Article BioImpacts ; Volume 11, Issue 1 , 2021 , Pages 45-52 ; 22285652 (ISSN) Pelaseyed, S. S ; Madaah Hosseini, H. R ; Nokhbedehghan, Z ; Samadikuchaksaraei, A ; Sharif University of Technology
    Tabriz University of Medical Sciences  2021
    Introduction: Porous 3D scaffolds synthesized using biocompatible and biodegradable materials could provide suitable microenvironment and mechanical support for optimal cell growth and function. The effect of the scaffold porosity on the mechanical properties, as well as the TiO2 nanoparticles addition on the bioactivity, antimicrobial, photocatalytic, and cytotoxicity properties of scaffolds were investigated. Methods: In the present study, porous scaffolds consisting poly (lactide-co-glycolide) (PLGA) containing TiO2 nanoparticles were fabricated via air-liquid foaming technique, which is a novel method and has more advantages due to not using additives for nucleation compared to former... 

    Emerging phospholipid nanobiomaterials for biomedical applications to lab-on-a-chip, drug delivery, and cellular engineering

    , Article ACS Applied Bio Materials ; 2021 ; 25766422 (ISSN) Rahimnejad, M ; Rabiee, N ; Ahmadi, S ; Jahangiri, S ; Sajadi, S. M ; Akhavan, O ; Saeb, M. R ; Kwon, W ; Kim, M ; Hahn, S. K ; Sharif University of Technology
    American Chemical Society  2021
    The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials... 

    Fabrication of a novel 3D scaffold for cartilage tissue repair: In-vitro and in-vivo study

    , Article Materials Science and Engineering C ; Volume 128 , 2021 ; 09284931 (ISSN) Haghighi, P ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Self-repairing is not an advanced ability of articular cartilage. Tissue engineering has provided a novel way for reconstructing cartilage using natural polymers because of their biocompatibility and bio-functionality. The purpose of cartilage tissue engineering is to design a scaffold with proper pore structure and similar biological and mechanical properties to the native tissue. In this study, porous scaffolds prepared from gelatin, chitosan and silk fibroin were blended with varying ratios. Between the blends of chitosan (C), gelatin (G) and silk fibroin (S), the scaffold with the weight per volume ratio of 2:2:3 (w/v) showed the most favorable and higher certain properties than the... 

    Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 179 , 2019 , Pages 495-504 ; 09277765 (ISSN) Habibi Jouybari, M ; Hosseini, S ; Mahboobnia, K ; Boloursaz, L. A ; Moradi, M ; Irani, M ; Sharif University of Technology
    Elsevier B.V  2019
    In the present study, the tri-layer nanofibers were synthesized via triaxial electrospinning process to control the sustained delivery of Doxorubicin (DOX), Paclitaxel (PTX) and 5- fluorouracil (5-FU) anticancer drugs from nanofibers. The 5-FU molecules were incorporated into the core solution (chitosan/polyvinyl alcohol (CS/PVA)) to fabricate the CS/PVA/5-FU inner layer of nanofibers. The intermediate layer was prepared from poly(lactic acid)/chitosan (PLA/CS) nanofibers. The DOX and PTX molecules were initially loaded into the g-C3N4 nanosheets and following were incorporated into the PLA/CS solution to fabricate the outer layer of nanofibers. The synthesized nanosheets and nanofibers were...