Loading...
Search for: advection-fluxes
0.005 seconds

    Extending a hybrid finite-volume-element method to solve laminar diffusive flame

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Vol. 66, issue. 2 , August , 2014 , pp. 181-210 ; ISSN: 10407790 Darbandi, M ; Ghafourizadeh, M ; Sharif University of Technology
    Abstract
    We extend a hybrid finite-volume-element (FVE) method to treat the laminar reacting flow in cylindrical coordinates considering the collocation of all chosen primitive variables. To approximate the advection fluxes at the cell faces, we use the upwind-biased physical influence scheme PIS and derive a few new extended expressions applicable in the cylindrical frame. These expressions are derived for both the Navier-Stokes and reactive flow governing equations, of which the latter expressions are considered novel in the finite-volume formulation. To validate our derived expressions, the current results are compared with the experimental data and other available numerical solutions. The results... 

    Numerical calculation of turbulent reacting flow in a model gas-turbine combustor

    , Article 41st AIAA Thermophysics Conference, 22 June 2009 through 25 June 2009 ; 2009 ; 9781563479755 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this work, an efficient bi-implicit strategy is suitably developed within the context of a hybrid finite volume element method to solve axisymmetric turbulent reactive flow in a model gas turbine combustor. Based on the essence of a control-volume-based finite-element method, the formulation benefits from the geometrical flexibility of the finite element methods while the discrete algebraic governing equations are derived through applying the conservation laws to discrete cells distributed in the solution domain. To enhance the efficiency of method, we extend the physical influence upwinding scheme to cylindrical coordinates. This extension helps to improve the advection flux...