Loading...
Search for: adverse-pressure-gradient
0.005 seconds

    Experimental investigation on turbulence intensity reduction in subsonic wind tunnels

    , Article Aerospace Science and Technology ; Volume 15, Issue 2 , 2011 , Pages 137-147 ; 12709638 (ISSN) Ghorbanian, K ; Soltani, M. R ; Manshadi, M. D ; Sharif University of Technology
    Abstract
    Experiments are performed to evaluate the impact of trip wires on the turbulence intensity in a few low speed wind tunnels. Trip wires of different sizes are installed at different positions in the contraction section of four different wind tunnels and measurements are made at various free stream velocities. The results indicate that the pressure distributions are altered compared to the clean condition. Trip wires move the adverse pressure gradient toward the inlet of the contraction section. Consequently, the turbulence intensity in the test section of the wind tunnels is reduced and the flow uniformity is improved considerably. Frequency and statistical analysis are performed and the... 

    Control of separation in the concave portion of contraction to improve the flow quality

    , Article Aeronautical Journal ; Volume 113, Issue 1141 , 2009 , Pages 177-182 ; 00019240 (ISSN) Ghorbanian, K ; Soltani, M.R ; Manshadi, M.D ; Mirzaei, M ; Sharif University of Technology
    2009
    Abstract
    Subsonic wind tunnel experiments were conducted to study the effect of forced transition on the pressure distribution in the concave portion of contraction. Further more, the effect of early transition on the turbulence level in the test section of the wind tunnel is studied. Measurements were performed by installing several trip strips at two different positions in the concave portion of the contraction. The results show that installation of the trip strips, have significant effects on both turbulence intensity and on the pressure distribution. The reduction in the free stream turbulence as well as the wall static pressure distribution varied significantly with the location of the trip... 

    Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 166, Issue 14-15 , August , 2011 , Pages 792-798 ; 03770257 (ISSN) Babaie, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Electroosmotic flow of power-law fluids in the presence of pressure gradient through a slit is analyzed. After numerically solving the Poisson-Boltzmann equation, the momentum equation with electroosmotic body force is solved through an iterative numerical procedure for both favorable and adverse pressure gradients. The results reveal that, in case of pressure assisted flow, shear-thinning fluids reach higher velocity magnitudes compared with shear-thickening fluids, whereas the opposite is true when an adverse pressure gradient is applied. The Poiseuille number is found to be an increasing function of the dimensionless Debye-Hückel parameter, the wall zeta potential, and the flow behavior... 

    Mass transport analysis of non-Newtonian fluids under combined electroosmotically and pressure driven flow in rectangular microreactors

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 508 , 2016 , Pages 345-359 ; 09277757 (ISSN) Yousefian, Z ; Saidi, M. H ; Sharif University of Technology
    Elsevier 
    Abstract
    Hydrodynamically fully developed flow of power-law fluids under combined action of electroosmotic and pressure gradient forces in rectangular microreactors is analyzed considering heterogeneous catalytic reactions. The Poisson-Boltzmann, Cauchy momentum, and concentration equations are considered in two dimensions and after being dimensionless are numerically solved applying a finite difference algorithm. Variation of axial concentration gradient, and axial and horizontal mass diffusions are taken into account as well. To accomplish a more general analysis, the velocity distribution is obtained by solving continuity and Cauchy momentum equations and is not considered as an average axial... 

    Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels

    , Article Microfluidics and Nanofluidics ; Volume 20, Issue 8 , 2016 ; 16134982 (ISSN) Reshadi, M ; Saidi, M. H ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    The secondary flow of PTT fluids in rectangular cross-sectional plane of microchannels under combined effects of electroosmotic and pressure driving forces is the subject of the present study. Employing second-order central finite difference method in a very refined grid network, we investigate the effect of electrokinetic and geometric parameters on the pattern, strength and the average of the secondary flow. In this regard, we try to illustrate the deformations of recirculating vortices due to change in the dimensionless Debye–Hückel and zeta potential parameters as well as channel aspect ratio. We demonstrate that, in the presence of thick electric double layers, significant alteration... 

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; 2017 , Pages 1-21 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid... 

    Experimental investigation of the leading edge vortex formation on unsteady boundary layer

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 232, Issue 18 , 2018 , Pages 3263-3280 ; 09544062 (ISSN) Davari, A. R ; Abdollahi, R ; Azimizadeh, E ; Sharif University of Technology
    Abstract
    Extensive experimental studies have been performed to investigate the unsteady boundary layer behavior over a plunging wind turbine blade section. The studies have been undertaken at various combinations of reduced frequencies, Reynolds numbers, and locations. A boundary layer rake has been carefully manufactured and utilized for velocity measurements inside the unsteady boundary layer. The measurement has been conducted in pre-static stall conditions. The reduced frequency and free stream velocity have varied from 0.005 to 0.1, and 30 to 60 m/s, respectively. To cover all possible scenarios, the streamwise positions of measurements have been chosen to be in favorable (x/c = 0.37), almost... 

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; Volume 32, Issue 1 , 2018 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid...