Loading...
Search for: aerodynamic-loads
0.005 seconds

    Effect of plunging amplitude on the performance of a wind turbine blade section

    , Article Aeronautical Journal ; Volume 111, Issue 1123 , 2007 , Pages 571-588 ; 00019240 (ISSN) Soltani, M. R ; Marzabadi, F. R ; Sharif University of Technology
    Royal Aeronautical Society  2007
    Abstract
    Extensive low speed wind-tunnel tests were conducted to study the unsteady aerodynamic behaviour of an airfoil sinusoidally oscillating in plunge. The experiments involved measuring the surface pressure distribution over a range of amplitudes, H = ±5 to ±15cm. In addition, steady state data were acquired and were used to furnish a baseline for further analysis and comparison. The model was oscillated with a constant reduced frequency, k = 0.058, at three mean angles of attack of 0°, 10° and 18°. The unsteady aerodynamic loads were calculated from the surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. The plunging displacements were... 

    Comparison of the unsteady loads of an airfoil in the pitching and plunging motions

    , Article 2006 ASME Joint U.S.- European Fluids Engineering Division Summer Meeting, FEDSM2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 2 FORUMS , 2006 , Pages 977-985 ; 0791847500 (ISBN); 9780791847503 (ISBN) Soltani, M ; Seddighi, M ; Rasi, F ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    A series of experiments were conducted on an oscillating airfoil in subsonic flow. The model was oscillated in two types of motions, pitch and plunge, at different velocities, and reduced frequencies. In addition, steady data were acquired and examined to furnish a baseline for analysis and comparison. The imposed variables of the experiment were reduced frequency, mean incident angle, amplitude of motion, and free stream velocity as well as the surface grit roughness. The unsteady aerodynamic loads were calculated using surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. Particular emphases were placed on the effects of different type of... 

    Comparison of the unsteady loads of an airfoil in the pitching and plunging motions

    , Article 2006 2nd ASME Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 2006 , 2006 ; 0791837831 (ISBN); 9780791837832 (ISBN) Soltani, M ; Seddighi, M ; Rasi, F ; Sharif University of Technology
    2006
    Abstract
    A series of experiments were conducted on an oscillating airfoil in subsonic flow. The model was oscillated in two types of motions, pitch and plunge, at different velocities, and reduced frequencies. In addition, steady data were acquired and examined to furnish a baseline for analysis and comparison. The imposed variables of the experiment were reduced frequency, mean incident angle, amplitude of motion, and free stream velocity as well as the surface grit roughness. The unsteady aerodynamic loads were calculated using surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. Particular emphases were placed on the effects of different type of... 

    Effect of reduced frequency on the aerodynamic behavior of an airfoil oscillating in a plunging motion

    , Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 40-52 ; 10263098 (ISSN) Soltani, M. R ; Rasi Marzabadi, F ; Sharif University of Technology
    2009
    Abstract
    A series of low speed wind tunnel tests were conducted to study the unsteady aerodynamic behavior of an airfoil sinusoidally oscillating in plunge. The experiments included measuring the surface pressure distribution over a range of reduced frequencies, k = 0.03 - 0.06. In addition, steady state data were acquired and were used to furnish a baseline for further analysis and comparison. The model was oscillated with amplitude of ±15 cm and at three different mean angles of attack of 0, 10° and 18°. The unsteady aerodynamic loads were calculated from the surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces. The plunging displacements were transformed into... 

    Application of multilayer perceptron network for unsteady three dimensional aerodynamic load prediction

    , Article 25th AIAA Applied Aerodynamics Conference, 2007, Miami, FL, 25 June 2007 through 28 June 2007 ; Volume 2 , 2007 , Pages 1197-1202 ; 10485953 (ISSN) ; 1563478986 (ISBN); 9781563478987 (ISBN) Gholamrezaei, M ; Soltani, M. R ; Ghorbanian, K ; Amiralaei, M. R ; Sharif University of Technology
    2007
    Abstract
    Surface pressure measurements were conducted for a pitch oscillation wing in a subsonic closed circuit wind tunnel. Experimental results have been used to train a multilayer perceptron network to foresee the effect of modification of oscillation amplitude and reduced frequency. Consistent results are obtained both for the training data as well as generalization to other amplitudes and reduced frequencies. This work indicates that artificial neural networks can reliably predict aerodynamic coefficients and forecast the effects of oscillation amplitude as well as reduced frequency on the wind turbine blade performance. Moreover, this study introduces a new tool for the designers to have enough... 

    Aero-thermoelastic stability of functionally graded plates

    , Article Composite Structures ; Volume 80, Issue 4 , 2007 , Pages 580-587 ; 02638223 (ISSN) Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    2007
    Abstract
    In this paper, an analytical investigation intended to determine the aero-thermoelastic stability margins of functionally graded panels is carried out. For this purpose, piston theory aerodynamics has been employed to model quasi-steady aerodynamic loading. The material properties of the plate are assumed to be graded continuously across the panel thickness. A simple power-law and the Mori-Tanaka scheme are used for estimating the effective material properties such as temperature-dependent thermoelastic properties. The effects of compressive in-plane loads and both uniform and through the thickness non-linear temperature distributions are also considered. Hamilton's principle is used to... 

    Experimental study of the plunging motion with unsteady wind tunnel wall interference effects

    , Article Experimental Techniques ; Volume 36, Issue 5 , FEB , 2012 , Pages 30-45 ; 07328818 (ISSN) Soltani, M. R ; Marzabadi, F. R ; Mohammadi, Z ; Sharif University of Technology
    2012
    Abstract
    A series of experiments were carried out to investigate unsteady behavior of the flow field as well as the boundary layer of an airfoil oscillating in plunging-type motion in a subsonic wind tunnel. The measurements involved surface-mounted hot films complimented with surface pressure. In addition, wind tunnel wall pressure distribution was acquired to furnish a baseline for the wall interference corrections. The airfoil is the section of a 660-kW wind turbine blade. The experiments were conducted at a Reynolds number of 0.42 million, and over two reduced frequencies of k = 0.06 and 0.085, at prestall, nearstall, and poststall regions. The unsteady aerodynamic loads were calculated from the... 

    Comparison of pitching and plunging effects on the surface pressure variation of a wind turbine blade section

    , Article Wind Energy ; Volume 12, Issue 3 , 2009 , Pages 213-239 ; 10954244 (ISSN) Soltani, M. R ; Seddighi, M ; Rasi Marzabadi, F ; Sharif University of Technology
    2009
    Abstract
    Numerous experiments were conducted on an oscillating airfoil in a subsonic wind tunnel. The experiments involved measuring the surface pressure distribution when the model oscillated in two types of motion, pitch and plunge, at three different Reynolds numbers, 0.42, 0.63 and 0.84 million, and over a range of reduced frequencies, k = 0.03 0.09. The unsteady aerodynamic loads were calculated from the surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. Particular emphasis was placed on the effects of different types of motion on the unsteady pressure distribution of the airfoil at pre-stall, near-stall and post-stall conditions. It was... 

    Dynamic behavior of a tension leg platform offshore wind turbine under environmental loads

    , Article Scientia Iranica ; Vol. 21, issue. 3 , 2014 , pp. 480-491 ; ISSN : 1026-3098 Ebrahimi, A ; Abbaspour, M ; Nasiri, R. M ; Sharif University of Technology
    Abstract
    In order to evaluate the dynamic behavior of floating offshore wind turbines, the authors consider two approaches. A numerical method is used to investigate Tension Leg Platform (TLP) offshore wind turbine response behavior under a parked condition. This code considers nonlinearities due to changes in the tension of tethers. The off-diagonal components of stiffness, damping and mass matrices are considered to calculate coupling. This code solves the nonlinear equation of motion at each time step. However, in order to validate the data generated by the code, a scaled-down model was fully tested in the marine laboratory. The importance of these series of experiments is due to the fact that... 

    Aeroelastic stability and response of composite swept wings in subsonic flow using indicial aerodynamics

    , Article Journal of Vibration and Acoustics, Transactions of the ASME ; Volume 135, Issue 5 , 2013 ; 10489002 (ISSN) Sina, S. A ; Farsadi, T ; Haddadpour, H ; Sharif University of Technology
    2013
    Abstract
    In this study, the aeroelastic stability and response of an aircraft swept composite wing in subsonic compressible flow are investigated. The composite wing was modeled as an anisotropic thin-walled composite beam with the circumferentially asymmetric stiffness structural configuration to establish proper coupling between bending and torsion. Also, the structural model consists of a number of nonclassical effects, such as transverse shear, material anisotropy, warping inhibition, nonuniform torsional model, and rotary inertia. The finite state form of the unsteady aerodynamic loads have been modeled based on the indicial aerodynamic theory and strip theory in the subsonic compressible flow.... 

    Computationally efficient model for flow-induced instability of CNT reinforced functionally graded truncated conical curved panels subjected to axial compression

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 318 , 2017 , Pages 957-980 ; 00457825 (ISSN) Mehri, M ; Asadi, H ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    As a first endeavor, the aeroelastic responses of functionally graded carbon nanotube reinforced composite (FG-CNTRC) truncated conical curved panels subjected to aerodynamic load and axial compression are investigated. The nonlinear dynamic equations of FG-CNTRC conical curved panels are derived according to Green's strains and the Novozhilov nonlinear shell theory. The aerodynamic load is estimated in accordance with the quasi-steady Krumhaar's modified supersonic piston theory by taking into account the effect of the panel curvature. Matrix transform method along with the harmonic differential quadrature method (HDQM) are employed to solve the nonlinear equations of motion of the FG-CNTRC... 

    An improved actuator disc model for the numerical prediction of the far-wake region of a horizontal axis wind turbine and its performance

    , Article Energy Conversion and Management ; Volume 185 , 2019 , Pages 482-495 ; 01968904 (ISSN) Behrouzifar, A ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Actuator disc models are frequently used to provide a semi-analytical approach to estimating aerodynamic loads on rotary blades. The basic idea is to distribute the aerodynamic loads on a virtual rotating disc instead of simulating the actual rotating blade. These loads are then imposed to represent the source terms of the Navier-Stokes equations, which can be solved numerically using the computational fluid dynamic methods. The thickness of the actuator disk grid is one important factor considerably affecting calculations of the wind turbine rotor. Past researches generally considered the idea of fixed grid thickness exerting along the blade in their actuator disk modeling. However, this... 

    Effects of geometric imperfections on the performance of Sahand cooling tower

    , Article 10th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2010, Bangkok, 3 August 2006 through 5 August 2006 ; Volume 5 , 2006 , Pages 331-338 ; 9748257207 (ISBN); 9789748257204 (ISBN) Riahi, H. T ; Haghighi, B ; Sharif University of Technology
    School of Engineering and Technology  2006
    Abstract
    During construction of one of the Sahand cooling towers due to slip forming performance some imperfections were raised mostly between elevation of +30 and +40 meter. It was evaluated that some points of the shell should be repaired. In constructing the cooling tower from elevation +40 to +60 meter these imperfections were removed and the cooling tower was constructed with no problem until the elevation +130 meter. In this paper reasons of generation of geometric imperfections in Sahand cooling tower are clearly shown and possible ways for preventing them are discussed. Applied repairing method for Sahand cooling tower is explained in detail. Geometrical imperfections of the constructed... 

    An efficient method for nonlinear aeroelasticy of slender wings

    , Article Nonlinear Dynamics ; Volume 67, Issue 1 , 2012 , Pages 659-681 ; 0924090X (ISSN) Shams, S ; Sadr, M. H ; Haddadpour, H ; Sharif University of Technology
    2012
    Abstract
    This paper aims the nonlinear aeroelastic analysis of slender wings using a nonlinear structural model coupled with the linear unsteady aerodynamic model. High aspect ratio and flexibility are the specific characteristic of this type of wings. Wing flexibility, coupled with long wingspan can lead to large deflections during normal flight operation of an aircraft; therefore, a wing in vertical/forward-afterward/torsional motion using a third-order form of nonlinear general flexible Euler-Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic strip theory based on the Wagner function is used for determination of aerodynamic loading on the wing. Combining these... 

    Nonlinear aeroelastic response of slender wings based on Wagner function

    , Article Thin-Walled Structures ; Volume 46, Issue 11 , 2008 , Pages 1192-1203 ; 02638231 (ISSN) Shams, Sh ; Sadr Lahidjani, M. H ; Haddadpour, H ; Sharif University of Technology
    2008
    Abstract
    This paper presents a method for nonlinear aeroelastic analysis of Human Powered Aircraft (HPA) wings. In this type of aircraft there is a long, highly flexible wing. Wing flexibility, coupled with long wing span can lead to large deflections during normal flight operation; therefore, a wing in vertical and torsional motion using the second-order form of nonlinear general flexible Euler-Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic theory based on Wagner function is used for determination of aerodynamic loading on the wing. Combining these two types of formulations yields the nonlinear integro-differentials aeroelastic equations. Using the Galerkin's... 

    Supersonic flutter prediction of functionally graded conical shells

    , Article Composite Structures ; Volume 92, Issue 2 , 2010 , Pages 377-386 ; 02638223 (ISSN) Mahmoudkhani, S ; Haddadpour, H ; Navazi, H.M ; Sharif University of Technology
    2010
    Abstract
    Aero-thermoelastic analysis of a simply supported functionally graded truncated conical shell subjected to supersonic air flow is performed to predict the flutter boundaries. The temperature-dependent properties of the FG shell are assumed to be graded through the thickness according to a simple rule of mixture and power-law function of volume fractions of material constituents. Through the thickness steady-state heat conduction is considered for thermal analysis. To perform the stability analysis, the general nonlinear equations of motion are first derived using the classical Love's shell theory and the von Karman-Donnell-type of kinematic nonlinearity together with the linearized...