Loading...
Search for: ahmed-body
0.006 seconds

    Numerical-Experimental geometric optimization of the Ahmed body and analyzing boundary layer profiles

    , Article Journal of Optimization Theory and Applications ; 2021 ; 00223239 (ISSN) Abdolmaleki, M ; Mashhadian, A ; Amiri, S ; Esfahanian, V ; Afshin, H ; Sharif University of Technology
    Springer  2021
    Abstract
    The trade-off between the fuel consumption and drag coefficient makes the investigations of drag reduction of utmost importance. In this paper, the rear-end shape optimization of Ahmed body is performed. Before changing the geometry, to identify the suitable simulation method and validate it, the standard Ahmed body is simulated using k − ω shear stress transport (SST) and k-epsilon turbulence models. The slant angle, rear box angle, and rear box length as variables were optimized simultaneously. Optimizations conducted by genetic algorithm (GA) and particle swarm optimization (PSO) methods indicate a 26.3% decrease in the drag coefficient. To ensure the validity of the results, a... 

    Numerical-Experimental geometric optimization of the ahmed body and analyzing boundary layer profiles

    , Article Journal of Optimization Theory and Applications ; 2021 ; 00223239 (ISSN) Abdolmaleki, M ; Mashhadian, A ; Amiri, S ; Esfahanian, V ; Afshin, H ; Sharif University of Technology
    Springer  2021
    Abstract
    The trade-off between the fuel consumption and drag coefficient makes the investigations of drag reduction of utmost importance. In this paper, the rear-end shape optimization of Ahmed body is performed. Before changing the geometry, to identify the suitable simulation method and validate it, the standard Ahmed body is simulated using k − ω shear stress transport (SST) and k-epsilon turbulence models. The slant angle, rear box angle, and rear box length as variables were optimized simultaneously. Optimizations conducted by genetic algorithm (GA) and particle swarm optimization (PSO) methods indicate a 26.3% decrease in the drag coefficient. To ensure the validity of the results, a... 

    Numerical-Experimental geometric optimization of the Ahmed body and analyzing boundary layer profiles

    , Article Journal of Optimization Theory and Applications ; Volume 192, Issue 1 , 2022 ; 00223239 (ISSN) Abdolmaleki, M ; Mashhadian, A ; Amiri, S ; Esfahanian, V ; Afshin, H ; Sharif University of Technology
    Springer  2022
    Abstract
    The trade-off between the fuel consumption and drag coefficient makes the investigations of drag reduction of utmost importance. In this paper, the rear-end shape optimization of Ahmed body is performed. Before changing the geometry, to identify the suitable simulation method and validate it, the standard Ahmed body is simulated using k − ω shear stress transport (SST) and k-epsilon turbulence models. The slant angle, rear box angle, and rear box length as variables were optimized simultaneously. Optimizations conducted by genetic algorithm (GA) and particle swarm optimization (PSO) methods indicate a 26.3% decrease in the drag coefficient. To ensure the validity of the results, a...