Loading...
Search for: air-gap-flux-density
0.006 seconds

    Approach for analytical modelling of axial-flux PM machines

    , Article IET Electric Power Applications ; Volume 10, Issue 6 , 2016 , Pages 441-450 ; 17518660 (ISSN) Taghipour Boroujeni, S ; Abedini Mohammadi, A ; Oraee, A ; Oraee, H ; Sharif University of Technology
    Institution of Engineering and Technology  2016
    Abstract
    In the presented paper, an analytical model is developed for calculation of the air gap magnetic flux density in the axial-flux surface-mounted PM machines. The slotting effect is taken into account in the air gap magnetic flux distribution, accurately. The main novelty of this study is replacing the stator teeth by some surface currents at the border of the removed stator teeth. The uniqueness theorem is applied to find the surface currents. The two-dimensional (2D) field solution in the slotless machine is solved easily by separation of variables method. The multi-slice quasi-3D method is applied for taking 3D nature of field distribution into account. In addition, the back-EMF, armature... 

    Computation of armature reaction field and full-load characteristics of an axial flux surface mounted pm machine using a new analytical approach

    , Article 26th Iranian Conference on Electrical Engineering, ICEE 2018, 8 May 2018 through 10 May 2018 ; 2018 , Pages 1027-1031 ; 9781538649169 (ISBN) Seyedi, S. M ; Sharifi, A. H ; Abedini Mohammadi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In recent years axial flux permanent magnet (AFPM) machines have found industrial applications because of such characteristics as high power density, compact structure and disc-like shape. Like other electrical machines, prediction of flux density distribution in the air gap of AFPM is essential. In this paper, an analytical method for calculation of air gap flux density caused by armature reaction is presented. The solution is based on Maxwell's equations. Separation of variables method is applied to field equations and 2D distribution of magnetic flux density in the air gap calculated in term of Fourier series. The 2-D distribution of three-phase armature winding is modeled exactly.... 

    Improvement of concentrated winding layouts for six-phase squirrel cage induction motors

    , Article IEEE Transactions on Energy Conversion ; Volume 35, Issue 4 , 2020 , Pages 1727-1735 Rezazadeh, G ; Tahami, F ; Capolino, G. A ; Vaschetto, S ; Nasiri Gheidari, Z ; Henao, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    The fault-tolerant capability is a prerequisite for electrical safety-critical applications. In this regard, multi-phase induction motors are well-known actuators used to provide this feature. Compared to conventional three-phase machines with distributed windings, induction machines having concentrated windings could be more fault-tolerant because of increasing the number of phases. In addition, concentrated windings have shorter end-winding and less required copper weight which makes it a lower cost solution compared to distributed windings. However, concentrated windings adversely increase the distortion of the air gap flux density which affects motor performances. In this paper, a...