Loading...
Search for: air-pressures
0.005 seconds

    Energy analysis of part flow and full flow Humid Air Turbine Cycle (HAT)

    , Article 2006 ASME 51st Turbo Expo, Barcelona, 6 May 2006 through 11 May 2006 ; Volume 4 , 2006 , Pages 319-327 ; 0791842398 (ISBN); 9780791842393 (ISBN) Noei Aghaei, V ; Khaledi, H ; Bakhtiari, B ; Ghofrani, M. B ; Sharif University of Technology
    2006
    Abstract
    Current researches on the development of gas turbine related power plants such as HAT cycle and Combined Cycle are aimed to increase the plant efficiency and output power, while reducing the cost of power generation and emission. Humid air turbine cycle (HAT) is one of innovative cycles, which are able to provide a substantial power boost of the system and an efficiency rise of several percentage points. In order to perform energy analysis of Full Flow HAT cycle and Part Flow HAT cycle an advanced thermodynamic model is developed, which is enabling evaluation of behavior of Full Flow and Part Flow Humid Air Turbines and predicting the influence of operational parameters in the performance of... 

    Air pressure dependence of natural-convection heat transfer

    , Article World Congress on Engineering 2010, WCE 2010, London, 30 June 2010 through 2 July 2010 ; Volume 2 , 2010 , Pages 1444-1447 ; 9789881821072 (ISBN) Saidi, M ; Abardeh, R. H ; Sharif University of Technology
    2010
    Abstract
    Heat transfer is one of the prevalent concepts with many usages in different fields of science, industry and so on. In different applications we need more or less to know about this phenomenon. Control of this phenomenon is too important in some cases and we should be aware how to control it. The importance of heat transfer rate and effect of various parameters on it, is a reason of performing this research. Because of changes of air pressure in different applications, we need to know how heat transfer affected by air pressure. In different places air pressure is higher or lower than atmospheric pressure and we can't use more of experimental equations (e.g. Morgan or Churchill-Chu for a... 

    Thermal Performance Evaluation of Domed Roofs

    , Ph.D. Dissertation Sharif University of Technology Faghih, Ahmad Reza (Author) ; Bahadori Nezhad, Mehdi (Supervisor)
    Abstract
    Domed roofs were commonly used in buildings with large areas. These roofs played an important role in the Iranian architecture and had a great effect on the buildings cooling loads. Solar energy absorption causes the roof temperature to increase in comparison with its ambient atmosphere. Wind flow removes some of the heat from the roof, and the rest goes thorough the roof and enters the building.The eometrical configuration of these domed roofs causes the wind velocity to increase over them, resulting in an increase in the convection heat transfer coefficient. Also, the heat transfer of the roof is accentuated by the fact that the area of a domed configuration is considerably greater than a... 

    Modelling of air pressure effects in casting moulds

    , Article Modelling and Simulation in Materials Science and Engineering ; Volume 13, Issue 6 , 2005 , Pages 903-917 ; 09650393 (ISSN) Attar, E ; Homayonifar, P ; Babaei, R ; Asgari, K ; Davami, P ; Sharif University of Technology
    2005
    Abstract
    In the casting process, as a mould is filled with molten metal, air escapes through the vents. Air pressure in the mould cavity has serious effects upon the filling behaviour such as surface profile of the molten metal and filling time. In this project a computational model was developed for calculation of air pressure during the mould filling. A 3D single phase code based on the SOLA-VOF algorithm was used for the prediction of the fluid flow. The ideal gas assumption, conservation of mass equation and Bernoulli law were used for the calculation of air pressure. A new algorithm was developed to interpolate air pressure on the surface cells. The creation of air pressure was correlated with... 

    Three dimensional numerical investigation of air flow over domed roofs

    , Article Journal of Wind Engineering and Industrial Aerodynamics ; Volume 98, Issue 3 , 2010 , Pages 161-168 ; 01676105 (ISSN) Faghih, A. K ; Bahadori, M. N ; Sharif University of Technology
    2010
    Abstract
    Domed roofs have been used in Iran and many other countries to cover large buildings such as mosques, shrines, churches, schools, etc. However their favorable thermal performance made them to be employed in other buildings such as bazaars, or market places, in Iran. The aim of this study was to determine the air pressure distribution over domed roofs, employing a numerical method. In this investigation, a three-dimensional model and a laminar inlet air flow were considered. The k-ε RNG method was employed for the turbulent flow simulation method. Simulation was run under three conditions of windows and a hole on top of the dome being open, or closed. The results were compared with the... 

    Experimental investigation of air flow over domed roofs

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 33, Issue 3 , 2009 , Pages 207-216 ; 10286284 (ISSN) Faghih Khorasani, A. R ; Bahador, M.N ; Sharif University of Technology
    2009
    Abstract
    Domed roofs have been used in Iran and many other countries to cover large buildings such as mosques, shrines, churches, schools, etc. However their favorable thermal performance has allowed them to be employed in other buildings like bazaars, or market places in Iran. In this investigation, wind pressure coefficients were determined experimentally for a domed roof model in a boundary layer wind tunnel. The model was a 1/10 scale model of the dome of an old school in the city of Yazd, in the central desert region of Iran. The model included a number of windows at the collar of the dome, and a hole on its apex. A total of 48 pressure tabs were employed to measure the air pressure at various... 

    A microfabricated platform for the study of chondrogenesis under different compressive loads

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 78 , 2018 , Pages 404-413 ; 17516161 (ISSN) Kowsari Esfahan, R ; Jahanbakhsh, A ; Saidi, M. S ; Bonakdar, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Microfluidic devices are beneficial in miniaturizing and multiplexing various cellular assays in a single platform. Chondrogenesis is known to pertain to chemical, topographical, and mechanical cues in the microenvironment. Mechanical cues themselves have numerous parameters such as strain magnitude, frequency, and stimulation time. Effects of different strain magnitudes on the chondrogenic differentiation of adult stem cells have not been explored thoroughly. Here, a new multilayer microdevice is presented for the unidirectional compressive stimulation of cells in a three-dimensional cell culture. Numerical simulations were performed to evaluate and optimize the design. Results showed a...