Loading...
Search for: aircraft-propulsion
0.01 seconds

    Optimal circular 3-arced with constant speed coordinated maneuvers for planar multi aircraft conflict resolution

    , Article 23rd Digital Avionics Systems Conference - Proceedings: Avionics System Transitioning to the Next Generation, Salt Lake City, UT, 24 October 2004 through 28 October 2004 ; Volume 1 , 2004 , Pages 3.E.4-1-3.E.4-10 Malaek, S. M. B ; Parastari, J ; Sharif University of Technology
    2004
    Abstract
    In this paper, the problem of designing optimal conflict-free maneuvers for multiple aircraft encounters is studied. The proposed maneuvers are based on changes of heading, speed and maneuvering time. The optimality of maneuvers among the conflict-free constraint is based on minimization of a certain cost function based on kinetic energy of either aircraft involved. Some suitable priority weight factors are incorporated into the cost function so that optimal resolution maneuvers are such that aircraft with lower priorities assume more responsibility in resolving the conflicts. As for considering aircraft turning dynamics, the circular 3-arced path with constant speed are proposed for each... 

    Co-flow fluidic thrust vectoring requirements for longitudinal and lateral trim purposes

    , Article AIAA/ASME/SAE/ASEE 42nd Joint Propulsion Conference, Sacramento, CA, 9 July 2006 through 12 July 2006 ; Volume 8 , 2006 , Pages 6283-6292 ; 1563478188 (ISBN); 9781563478185 (ISBN) Saghafi, F ; Banazadeh, A ; Sharif University of Technology
    2006
    Abstract
    The feasibility of using fluidic thrust-vectoring system, as a control technique for the longitudinal and lateral trim purpose was investigated in this study. For this purpose, integration of a Co-flow method into the propulsion unit of a conceptual aerial vehicle was assumed. The focus of the research presented was to estimate the required thrust vector angle in order to trim the aerial vehicle in different flight phases. Since the fluidic thrust vectoring requires secondary air flow to deflect the engine exhaust gas, this research also provides an analytical toolset for preliminary sizing of a suitable secondary air supply. It was found that thrust vectoring could be an effective mean of... 

    Blockage-ratio effect on aerosol behavior of soot nano-pm in a combustor burning jet propulsion fuel

    , Article 46th AIAA Thermophysics Conference, 2016, 13 June 2016 through 17 June 2016 ; 2016 ; 9781624104350 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2016
    Abstract
    In this study, we numerically investigate the size effect of a bluff body, embedded inside a combustor, on the formation of carbonaceous nano-particulate matter (PM). The combustor is fed with a jet propulsion fuel. We first evaluate our extended numerical tool by simulating a turbulent kerosene/air nonpremixed flame in a combustor. The achieved results are then compared with those of experiment. The comparisons show that there are good agreements between them. Next, we embed an O-ring type flame holder inside the combustor to change its configuration, i.e., to extend it to a bluff-body burner. Assuming a constant air mass flow rate, we investigate the blockage ratio effects of the burner... 

    Optimization of a regenerative gas turbine engine with isothermal heat addition with the genetic algorithm

    , Article Proceedings of the ASME Turbo Expo, 8 June 2009 through 12 June 2009, Orlando, FL ; Volume 4 , 2009 , Pages 265-274 ; 9780791848852 (ISBN) Haghighi, E ; Borzou, B ; Ghahremani, A. R ; Shafii, M. B ; Sharif University of Technology
    Abstract
    The use of advanced cycles to take advantage of the gas turbine's thermodynamic characteristics has received increasing attention in recent years. These cycles have been developed for large scale power generation. Due to the powerful abilities of bio-inspired computing techniques such as Genetic Algorithm in locating the optimal (or near optimal) solutions to a given optimization problem, they are widely utilized for determining the parameters of different engineering systems in order to meet the specified performance objectives for a given problem. In order to illustrate the performance of one of these techniques, development and application of it for an engineering problem is presented. In... 

    Numerical simulation of soot formation in a JP combustor using different surrogate fuels

    , Article 2018 Joint Thermophysics and Heat Transfer Conference, 25 June 2018 through 29 June 2018 ; 2018 ; 9781624105524 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Saidi, M. H ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2018
    Abstract
    As is known, jet propulsion fuels are rather complex with combustion resulting in a vast range of chemical compounds. So, their real modeling is rather hard and the application of final constructed models is restricted to a narrow band of real propulsion jet fuels. The main objective of this study is to extend suitable surrogate fuel models to reliably predict the combustion and soot characteristics of the equivalent jet propulsion fuel. In this regard, the combustion of proposed surrogate fuels is numerically studied in the above chosen combustion chamber. Of importance, the surrogate fuels should be proposed suitably to represent the correct physical characteristics and the real chemical... 

    Energy and exergy analyses of an integrated gas turbine thermoacoustic engine

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; Volume 225, Issue 4 , June , 2011 , Pages 389-402 ; 09576509 (ISSN) Karimi, M ; Ghorbanian, K ; Gholamrezaei, M ; Sharif University of Technology
    2011
    Abstract
    In this article, an attempt is made to utilize the exhaust gases of a small gas turbine to augment power output through the employment of a thermoacoustic system. A simple gas turbine cycle is selected as the base cycle and it is assumed that the thermoacoustic system is powered only by the waste heat of the base gas turbine. A comprehensive cycle analysis of the integrated gas turbine thermoacoustic engine (IGTTE) is carried out from an energy and exergy point of view. Exergy efficiency and internal exergy efficiency are calculated for the different components of the base gas turbine engine as well as the IGTTE. Value and exergy flow diagrams are used to investigate the possible... 

    Fuzzy logic computing for design of gas turbine engine fuel control system

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010 ; Volume 5 , February , 2010 , Pages 723-727 ; 9781424455850 (ISBN) Montazeri Gh, M ; Yousefpour, H ; Jafari, S ; Sharif University of Technology
    2010
    Abstract
    This paper presents the fuzzy logic computing for the design and implementation of fuel controller for gas turbine engines. For this purpose, a fuzz controller is designed in order to be implemented on an electronic control unit where it is used to drive a servo operated fuel control valve. The fuzzy logic computing approach for different parts of the controller including fuzzification, rule base, inference engine and defuzzification are then described. Finally, computer simulation of the fuzzy controllers integrated with the engine model is performed to investigate the effectiveness of the proposed fuzzy controller on the performance of a turbojet engine. The results are provided to show... 

    Numerical study of inlet turbulators effect on the thermal characteristics of a jet propulsion-fueled combustor and its hazardous pollutants emission

    , Article Journal of Heat Transfer ; Volume 139, Issue 6 , 2017 ; 00221481 (ISSN) Darbandi, M ; Ghafourizadeh, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    This work numerically studies the effects of inlet air and fuel turbulators on the thermal behavior of a combustor burning the jet propulsion (JP) (kerosene-surrogate) fuel and its resulting pollutants emission including the nanoparticulate soot aerosols and aromatic compounds. To model the soot formation, the method employs a semi-empirical two-equation model, in which the transport equations for soot mass fraction and soot number density are solved considering soot nanoparticles evolutionary process. The soot nucleation is described using the phenyl route in which the soot is formed from the polycyclic aromatic hydrocarbons. Incorporating a detailed chemical mechanism described by 200...