Loading...
Search for: airfoils
0.006 seconds
Total 121 records

    Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 17 , 2008 ; 00223727 (ISSN) Abdoli, A ; Mirzaee, I ; Anvari, A ; Purmahmod, N ; Sharif University of Technology
    2008
    Abstract
    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s-1 at a post-stall angle of attack of 23°. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation... 

    Wind tunnel study of the effect zigzag tape on aerodynamics performance of a wind turbine airfoil

    , Article Journal of Advanced Research in Fluid Mechanics and Thermal Sciences ; Volume 41, Issue 1 , 2018 , Pages 1-9 ; 22897879 (ISSN) Jafari Gahraz, R ; Lazim, T.M ; Darbandi, M ; Sharif University of Technology
    Penerbit Akademia Baru  2018
    Abstract
    A wind tunnel study was performed on the FFA-W-3-270 airfoil, which form a segment of a 1.25 MW wind turbine blade, to examine the effect of fixed roughness height and position using a zigzag tape boundary layer trip strip. Tests were conducted at a Reynolds number of 1×106 over a wide range of angles of attack. The zigzag tape, as an artificial roughness device, not only triggers a premature transition in the flow whereby laminar flow regimes change to turbulent, but also increases the momentum thickness of the turbulent boundary layer and change the airfoil camber. The 60° zigzag tape of 0.5 mm and 1 mm height was placed on the suction side of the airfoil at different chord wise locations.... 

    RANS modelling of a NACA4412 wake using wind tunnel measurements

    , Article Fluids ; Volume 7, Issue 5 , 2022 ; 23115521 (ISSN) Tabatabaei, N ; Hajipour, M ; Mallor, F ; Örlü, R ; Vinuesa, R ; Schlatter, P ; Sharif University of Technology
    MDPI  2022
    Abstract
    Wake analysis plays a significant role in wind-farm planning through the evaluation of losses and energy yield. Wind-tunnel tests for wake studies have high costs and are time-consuming. Therefore, computational fluid dynamics (CFD) emerges as an efficient alternative. An especially attractive approach is based on the solution of the Reynolds-averaged Navier–Stokes (RANS) equations with two-equation turbulence closure models. The validity of this approach and its inherent limitations, however, remain to be fully understood. To this end, detailed wind-tunnel experiments in the wake of a NACA4412 wing section profile are compared with CFD results. Two-and three-dimensional RANS simulations are... 

    Experimental investigation on the aerodynamic performance of NLF-0414 iced-airfoil

    , Article Journal of Applied Fluid Mechanics ; Volume 9, Issue 2 , 2016 , Pages 587-592 ; 17353572 (ISSN) Ebrahimi, A ; Hajipour, M ; Hasheminasab, H ; Sharif University of Technology
    Isfahan University of Technology 
    Abstract
    Icing phenomenon on a natural laminar flow airfoil (NLF-0414) has been experimentally investigated. Double horn glaze ice geometry which was acquired during a 15 minutes spray time at-2.23°C with liquid water content and a median volumetric diameter of 1.0 g/m3 and 20 μm, has been extracted from database of NASA Lewis Research Center. Pressure distribution over airfoil surfacewas evaluated at angles of attack between -2 to 6 degreesfor both iced and clean airfoils. Aerodynamics performance degradation of the iced airfoil has been studied and it is shown that double horn ice accretion, due to its unique geometry, severely affects aerodynamic characteristics of natural laminar flow airfoils.... 

    Experimental investigation of velocity profiles in the wake of an oscillating airfoil

    , Article 2007 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007, San Diego, CA, 30 July 2007 through 2 August 2007 ; Volume 1 SYMPOSIA, Issue PART B , August , 2007 , Pages 1873-1882 ; 0791842886 (ISBN); 9780791842881 (ISBN) Soltani, M. R ; Mahmoudi, M ; Sharif University of Technology
    2007
    Abstract
    A series of experiments were carried out to study the unsteady wakes behind an oscillating airfoil. The airfoil is a section of a wind turbine blade oscillating in pitch about the quarter chord axis at various reduced frequencies, oscillation amplitude and mean angles of attack. Real time velocity profiles were obtained using total and static pressure at 35 vertically aligned points behind the airfoil via two similar rakes. The rakes were located at a distance of 1.5 chord length behind the model. The results show great influence of oscillation amplitude and reduced frequency on the wake velocity profiles. Copyright © 2007 by ASME  

    An experimental study of buffet detection on supercritical airfoils in transonic regime

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 229, Issue 2 , 2015 , Pages 312-322 ; 09544100 (ISSN) Golestani, A ; Ehghaghi Bonab, M. B ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    Conventional buffet onset methods for a 2D supercritical airfoil, SC0410, in transonic regime for various Mach number and various angles of attack have been surveyed. The existing methods give good results for high subsonic and transonic regimes, but demand a computational procedure to detect the buffet onset. One of these methods, trailing edge pressure divergence, that have been recognized inappropriate in other studies for supercritical airfoils, shows acceptable result at least for the present supercritical airfoil. A new method has been proposed by the authors for transonic regime that is based on the physical definition of the buffet onset from the surface pressure distribution... 

    Flow visualization of internal waves and wakes of a streamlined body in a stratified fluid

    , Article Journal of Applied Fluid Mechanics ; Volume 9, Issue 2 , 2016 , Pages 635-641 ; 17353572 (ISSN) Bidokhti, A. A ; Bidokhti, A. A ; Sharif University of Technology
    Isfahan University of Technology  2016
    Abstract
    The wake and internal waves of a moving three dimensional (3D) airfoil body in a stratified fluid has been investigated in a large stratified tank with a finite depth using movies of shadowgraphs of the flow fields. Typical Reynolds and Froude numbers of the flow varied between 103 and 104, and 0.3 and 2 respectively. The flows are generated often by towing the body in a uniformly stratified flow, while limited cases are carried out with body stationary and the channel was in recirculating mode. For some experiments the density profile had a stepped like shape. The wake flow is often consisted of internal waves including random and coherent ones. Distortion of density fields was also... 

    Experimental investigation of shock-buffet criteria on a pitching airfoil

    , Article Chinese Journal of Aeronautics ; Volume 35, Issue 7 , 2022 , Pages 179-191 ; 10009361 (ISSN) Masdari, M ; Zeinalzadeh, A ; Abdi, M. A ; Soltani, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    An experimental investigation of the shock-buffet phenomenon subject to unsteady pitching supercritical airfoil around its quarter chord has been conducted in a transonic wind tunnel. The model was equipped with pressure taps connected to the fast response pressure-transducers. Measurements were conducted at different free-stream Mach number from 0.61 to 0.76. The principle goal of this investigation was to experimentally discuss the shock-buffet criterion over a SC(2)-0410 supercritical pitching related to the hysteresis loops of total drag and trailing edge pressure, the behaviour of the shock wave foot location, the pressure distribution over the upper surface, and by implementing the... 

    Investigation of the Effect of Using 3D Airfoils in the First Row Blades of v94.2 Gas Turbine Compressor Using CFX Software

    , M.Sc. Thesis Sharif University of Technology Mohebi, Zeinab (Author) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    CDA and NACA65 airfoils, originally designed for aircraft engine applications so do not have the best possible performance for heavy-duty industrial gas turbines and should be optimized according to the operating conditions and requirements of these turbines. For example, due to the high mass flow in industrial gas turbines, the first rows of the compressor deal with the distribution of critical velocities and sound level, while in the middle and end rows of the flow, the flow is subsonic. In designing these airfoils, two parameters of wide performance drop and range should be considered. Since the diffusion of the suction surface causes a drop, the design of new airfoils should start with... 

    Subsonic and transonic airfoil inverse design via Ball-Spine Algorithm

    , Article Computers and Fluids ; Volume 84 , 2013 , Pages 87-96 ; 00457930 (ISSN) Nili Ahmadabadi, M ; Ghadak, F ; Mohammadi, M ; Sharif University of Technology
    2013
    Abstract
    Inverse design in external flow regimes usually involves finding the wall shape associated with a prescribed distribution of wall pressure or velocity. In this research, a novel iterative inverse design method is developed for inviscid subsonic and transonic external flow regimes. The method links up a novel inverse design algorithm, called Ball-Spine Algorithm (BSA), and a 2D inviscid analysis code. The Euler equations are solved for a physical domain of which some unknown boundaries are iteratively modified via BSA until a prescribed pressure distribution is reached. In BSA, the unknown walls are composed of a set of virtual balls that move freely along the specified directions called... 

    Experimental investigation of the leadingedge roughness on the boundary layer of a plunging airfoil

    , Article 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010, 19 September 2010 through 24 September 2010, Nice ; Volume 2 , 2010 , Pages 1582-1588 ; 9781617820496 (ISBN) Rasi Marzabadi, F ; Soltani, M. R ; Masdari, M ; Sharif University of Technology
    2010
    Abstract
    Extensive experimental investigation was conducted to study the effect of leading-edge roughness on the state of the boundary layer of a wind turbine blade section. The application of surface grit roughness simulates surface irregularities that occur on the wind turbine blades. The measurements were done using multiple hot-film sensors and surface pressure transducers in both static and plunging oscillation of the airfoil. Frequency domain analysis was used to determine the state of the unsteady boundary layer  

    Experimental investigation of a supercritical airfoil boundary layer in pitching motion

    , Article Journal of Mechanical Science and Technology ; Volume 31, Issue 1 , 2017 , Pages 189-196 ; 1738494X (ISSN) Masdari, M ; Jahanmiri, M ; Soltani, M. R ; Tabrizian, A ; Gorji, M ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2017
    Abstract
    In this study, the boundary layer velocity profile on the upper surface of a supercritical airfoil in a forced sinusoidal pitching motion was measured and experimentally investigated. Measurements were performed using a boundary layer rake, including total pressure tubes positioned at 25 % of the chord far from the leading edge on the upper surface. For static measurements, the effects of the angle of attack between −3° and 14° and free-stream velocity between 40 m/s and 70 m/s were investigated; for dynamic measurements, the effects of oscillation amplitude variation between ±3° and ±10°, reduced frequency from 0.007 to 0.0313, and mean angle of attack between −3° and 6° were studied during... 

    A directional renumbering strategy for improving unstructured grid data structure

    , Article 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, 4 January 2010 through 7 January 2010 ; 2010 ; 9781600867392 (ISBN) Fouladi, N ; Darbandi, M ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    A very simple and computationally low cost numerical algorithm is developed to generate a quasi-structured data structure for an unstructured grid. To achieve this purpose, the data structure in the matrices of an unstructured grid is classified to address the element layers and node lines in the computational domain. In this regard, elements and nodes of the unstructured grid are renumbered in a directional ordering-based strategy. The elements and nodes arrangement in each layer and line is accomplished in a unique direction around an interior object of the grid either clockwise or counterclockwise. Furthermore, a new searching scheme is introduced which guarantees a quick search inside... 

    Modification of standard k-epsilon turbulence model for multi-element airfoil application using optimization technique

    , Article 24th AIAA Applied Aerodynamics Conference, San Francisco, CA, 5 June 2006 through 8 June 2006 ; Volume 1 , 2006 , Pages 216-227 ; 10485953 (ISSN); 1563478129 (ISBN); 9781563478123 (ISBN) Darbandi, M ; Setayeshgar, A ; Vakili, S ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2006
    Abstract
    The use of multi-element airfoils has been known as a major approach to boost up the lift of wing without dramatic increase in its drag. In fact, the configuration helps to reduce the chance of flow separation over the airfoil. However, the use of a complicated geometry such as multi-element airfoil would normally cause complexity in flow behavior. The experience has shown that the flow field complexities cannot be properly modeled using standard two-equation k-epsilon turbulence model. Therefore, it is important to improve the accuracy of general turbulence models in specific applications and complex computational domains. In this work, we extend a suitable objective function based on... 

    The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    , Article Shock Waves ; 2015 ; 09381287 (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Taheri, R ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    A shock control bump (SCB) is a flow control method which uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB which are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and... 

    Numerical aerodynamic evaluation and noise investigation of a Bladeless fan

    , Article Journal of Applied Fluid Mechanics ; Volume 8, Issue 1 , January , 2015 , Pages 133-142 ; 17353572 (ISSN) Jafari, M ; Afshin, H ; Farhanieh, B ; Bozorgasareh, H ; Sharif University of Technology
    Isfahan University of Technology  2015
    Abstract
    Bladeless fan is a novel fan type that has no observable impeller, usually used for domestic applications. Numerical investigation of a Bladeless fan via Finite Volume Method was carried out in this study. The fan was placed in center of a 4×2×2m room and 473 Eppler airfoil profile was used as cross section of the fan. Performance and noise level of the fan by solving continuity and momentum equations as well as noise equations of Broadband Noise Source (BNS) and Ffowcs Williams and Hawkings (FW-H) in both steady state and unsteady conditions were studied. Flow increase ratio of the fan was captured. Furthermore, BNS method could find outlet slit of the air as the main source of the noise... 

    The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    , Article Shock Waves ; Volume 26, Issue 4 , 2016 , Pages 491-511 ; 09381287 (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Taheri, R ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    A shock control bump (SCB) is a flow control method that uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB that are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and... 

    Numerical aerodynamic analysis of a damaged airfoil

    , Article 25th AIAA Applied Aerodynamics Conference, 2007, Miami, FL, 25 June 2007 through 28 June 2007 ; Volume 2 , 2007 , Pages 1120-1127 ; 10485953 (ISSN) ; 1563478986 (ISBN); 9781563478987 (ISBN) Rasi Marzabadi, F ; Ajalli, F ; Mani, M ; Taeibi Rahni, M ; Sharif University of Technology
    2007
    Abstract
    The flow on a section of NACA 641-412 airfoil with right and inverse triangle shaped damage was numerically investigated. The flow through the damage was driven by the pressure differential between the upper and lower wing surfaces. The results showed that for both damage shapes the flows could be categorized as weak, transitional or strong jets. For both damage cases the jet exited from the rear of the damage and its size was determined by the width of the rear part of the hole. Generally, when compared with an undamaged model, increasing incidence for a damaged model resulted in increased loss of lift coefficient, increased drag coefficient and more negative pitching moment coefficient.... 

    Effect of plunging amplitude on the performance of a wind turbine blade section

    , Article Aeronautical Journal ; Volume 111, Issue 1123 , 2007 , Pages 571-588 ; 00019240 (ISSN) Soltani, M. R ; Marzabadi, F. R ; Sharif University of Technology
    Royal Aeronautical Society  2007
    Abstract
    Extensive low speed wind-tunnel tests were conducted to study the unsteady aerodynamic behaviour of an airfoil sinusoidally oscillating in plunge. The experiments involved measuring the surface pressure distribution over a range of amplitudes, H = ±5 to ±15cm. In addition, steady state data were acquired and were used to furnish a baseline for further analysis and comparison. The model was oscillated with a constant reduced frequency, k = 0.058, at three mean angles of attack of 0°, 10° and 18°. The unsteady aerodynamic loads were calculated from the surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. The plunging displacements were... 

    Flow analysis around a pitching airfoil

    , Article Collection of Technical Papers - 22nd AIAA Applied Aerodynamics Conference, Providence, RI, 16 August 2004 through 19 August 2004 ; Volume 2 , 2004 , Pages 914-924 ; 10485953 (ISSN) Tolouei, E ; Mani, M ; Soltani, M. R ; Boroomand, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2004
    Abstract
    A series of low-speed wind tunnel tests were performed to investigate the unsteady pressure distribution over an airfoil. Dynamic pitching motion was produced by oscillating the model over a range of reduced frequencies, k=0.022 - 0.066. In addition, steady data were acquired and examined to furnish as a baseline for analysis and comparison. The model was oscillated between 0-18° angle of attack. Surface static pressure was measured from x/c=5-80% for both upper and lower surfaces. The pressure coefficients in the low angle of attack range showed little overshoot when compared with the static values, while for the large angle of attack cases the differences were significant. For a constant...