Loading...
Search for: aligned-carbon-nanotubes
0.005 seconds

    CNT Modified Coatings for Glucose Sensing

    , M.Sc. Thesis Sharif University of Technology Partovi, Parisa (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    This research describes a new and relatively general method to grow well-aligned carbon nanotubes (CNTs) on cobalt-deposited stainless steel by thermal chemical vapor deposition (CVD) of ethylenediamine precursor. The CNTs are vertically aligned at high density over large areas on the surface. Different effective parameters in growth of carbon nanotubes, as type of substrate, surface treatment, temperature of growth , feeding carbon supplies have been studied. Finally, aligned carbon nanotubes have been prepared by 100-150 nm diameter and 9µ length. CoOx•nH2O–MWCNTs nanocomposites were successfully synthesized, using a cathodic electrochemical reduction of H2O2 to deposit cobalt... 

    Investigation of Aligned Carbon Nanotubes Modified by Platinum Nanoparticles as Hydrogen Sulfide Sensor

    , M.Sc. Thesis Sharif University of Technology Salmani Rezaie, Salva (Author) ; Dolati, Abolghasem (Supervisor) ; Ghorbani, Mohamad (Supervisor)
    Abstract
    The present research describes sensing behavior of modified aligned carbon nanotubes toward detection of hydrogen sulfide. Aligned carbon nanotubes were grown on etched stainless steel by thermal chemical vapor deposition. Obtained CNTs have curved closed tips and bamboo like structure. Purification of carbon nanotubes were performed by electrochemical oxidation of CNTs. Potential cycling was applied on grown CNTs in different acid solutions and 0.2 M sulfuric acid was chosen to oxidize the CNTs. Carboxylic functional groups were produced by electrochemical oxidation of CNTs and can be observed in FTIR studies. These groups enhanced the electrochemical properties of electrodes and may act as... 

    Modification of well-aligned carbon nanotubes with dihexadecyl hydrogen phosphate: Application to highly sensitive nanomolar detection of simvastatin

    , Article Journal of Applied Electrochemistry ; Volume 44, Issue 2 , February , 2014 , Pages 263-277 ; ISSN: 0021891X Fayazfar, H ; Afshar, A ; Dolati, A ; Ghalkhani, M ; Sharif University of Technology
    Abstract
    The first usage of dihexadecyl hydrogen phosphate (DHP)-modified highly oriented multi-walled carbon nanotube (MWCNTs) forests in a sensor configuration was developed to investigate the electrochemical oxidation and determination of simvastatin (SV) in pharmaceutical dosage forms. Synthesis of well-aligned MWCNTs on a conductive Ta substrate by catalytic vapor deposition technique using a common chemical, ethylenediamine, and without being plasma-aided was reported. The electrochemical behavior and oxidation of SV at the aligned MWCNTs/DHP/Ta electrode were discussed in detail through cyclic voltammetry and differential pulse voltammetry. This modified electrode showed considerably higher... 

    Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor

    , Article Electrochimica Acta ; Volume 390 , 2021 ; 00134686 (ISSN) Abdollahi, A ; Abnavi, A ; Ghasemi, F ; Ghasemi, S ; Sanaee, Z ; Mohajerzadeh, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study reports the successful fabrication of high-performance flexible binder-free lithium-ion battery anode and supercapacitor based on the synthesis of 3D hierarchical MnO2 nanoflakes (NFs) on vertically aligned carbon nanotubes (VACNTs) grown upon stainless steel (SS). The experimental results revealed that the prepared electrodes were well served as supercapacitors with a tremendous specific capacitance of MnO2 NFs VACNT/SS 1131 F/g at 0.25 A/g in 0.5 mol.L−1 Na2SO4, 518.8% more than VACNT/SS (218 F/g). Compared to other MnO2 NFs/CNT composites, as-fabricated binder-free MnO2 NFs/VACNTs electrode achieves outstanding performance with high initial discharge and charge capacities of... 

    Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor

    , Article Electrochimica Acta ; Volume 390 , 2021 ; 00134686 (ISSN) Abdollahi, A ; Abnavi, A ; Ghasemi, F ; Ghasemi, S ; Sanaee, Z ; Mohajerzadeh, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study reports the successful fabrication of high-performance flexible binder-free lithium-ion battery anode and supercapacitor based on the synthesis of 3D hierarchical MnO2 nanoflakes (NFs) on vertically aligned carbon nanotubes (VACNTs) grown upon stainless steel (SS). The experimental results revealed that the prepared electrodes were well served as supercapacitors with a tremendous specific capacitance of MnO2 NFs VACNT/SS 1131 F/g at 0.25 A/g in 0.5 mol.L−1 Na2SO4, 518.8% more than VACNT/SS (218 F/g). Compared to other MnO2 NFs/CNT composites, as-fabricated binder-free MnO2 NFs/VACNTs electrode achieves outstanding performance with high initial discharge and charge capacities of... 

    Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate

    , Article Biosensors and Bioelectronics ; Volume 31, Issue 1 , 2012 , Pages 110-115 ; 09565663 (ISSN) Gholizadeh, A ; Shahrokhian, S ; Iraji zad, A ; Mohajerzadeh, S ; Vosoughi, M ; Darbari, S ; Sanaee, Z ; Sharif University of Technology
    Abstract
    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed... 

    Investigating Electrochemical Behavior of Biosensor Based on Vertically Aligned Carbon Nanotubes

    , Ph.D. Dissertation Sharif University of Technology Gholizadeh, Azam (Author) ; Shahrokhian, Saeed (Supervisor) ; Iraji Zad, Azam (Co-Advisor) ; Mohajerzadeh, Shamsoddin (Co-Advisor) ; Vossoughi, Manoochehr (Co-Advisor)
    Abstract
    In this research we focus on fabrication, characterization and performance of biosensors based on vertically aligned carbon nanotubes. Carbon nanotubes have been used as high density carbon nanotubes and nanoelectrode array. Carbon nanotubes have been grown using plasma enhanced chemical vapor deposition method. Characterization and performance of biosensors have been studied by cyclic voltammetry and electrochemical impedance spectroscopy methods.
    The mediator-less glutamate biosensor is prepared based on covalently attached glutamate dehydrogenase on vertically aligned carbon nanotubes. The biosensor has a low detection limit of 57 nM, two linear range of 0.1-20 µM with sensitivity of... 

    Synthesis and electrochemical characterization of sol-gel-derived RuO 2/carbon nanotube composites

    , Article Journal of Solid State Electrochemistry ; Vol. 18, Issue 4 , April , 2014 , pp. 993-1003 ; Online ISSN: 1433-0768 Kahram, M ; Asnavandi, M ; Dolati, A ; Sharif University of Technology
    Abstract
    Ruthenium oxide was coated on multiwalled carbon nanotubes (MWCNTs) to obtain nanocomposite electrode which has a good response to the pH. To synthesize this electrode, gold and cobalt were coated on a stainless steel 304 substrates, respectively, and then, vertically aligned carbon nanotubes were grown on the prepared substrates by chemical vapor deposition. Gold reduced activity of the stainless steel, while cobalt served as a catalyst for growth of the carbon nanotube. Ruthenium oxide was then coated on MWCNTs via sol-gel method. At last, different techniques were used to characterize the properties of synthesized electrode including scanning electron microscopy (SEM), transmission... 

    Electrodeposition of various au nanostructures on aligned carbon nanotubes as highly sensitive nanoelectrode ensembles

    , Article Journal of Materials Engineering and Performance ; Volume 24, Issue 5 , May , 2015 , Pages 2005-2015 ; 10599495 (ISSN) Fayazfar, H ; Afshar, A ; Dolati, A ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    An efficient method has been developed to synthesize well-aligned multi-walled carbon nanotubes (MWCNTs) on a conductive Ta substrate by chemical vapor deposition. Free-standing MWCNTs arrays were functionalized through electrochemical oxidation with the formation of hydroxyl and carboxyl functional groups. Facile template-free electrochemical routes were then developed for the shape-selective synthesis of less-common Au nanostructures, including flower, sphere, dendrite, rod, sheet, and cabbage onto the aligned MWCNTs at room temperature. Especially, among all the synthesis methods for Au nanocrystals, this is the first report using electrochemical technique to synthesize wide variety... 

    Flexible free-standing vertically aligned carbon nanotube on activated reduced graphene oxide paper as a high performance lithium ion battery anode and supercapacitor

    , Article Electrochimica Acta ; Volume 320 , 2019 ; 00134686 (ISSN) Abdollahi, A ; Abnavi, A ; Ghasemi, S ; Mohajerzadeh, S ; Sanaee, Z ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Here, controlled growth of vertically aligned carbon nanotubes (VACNTs) on free-standing porous activated reduced graphene oxide (a-rGO) paper was fabricated using plasma-enhanced chemical vapor deposition method. The electrochemical performance of prepared film was investigated to provide effective electrode for 3D flexible high-performance lithium-ion batteries (LIBs) and supercapacitors. The results revealed that the prepared electrode exhibited a high specific capacitance of 347 F/g at 0.5 A/g in 1 M KOH electrolyte, 60% more than non-activated rGO-paper (218 F/g). The VACNTs on a-rGO have increased the accessible surface area and acted as efficient electrical conducting paths, which... 

    Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance

    , Article Analytical Chemistry ; Volume 84, Issue 14 , June , 2012 , Pages 5932-5938 ; 00032700 (ISSN) Gholizadeh, A ; Shahrokhian, S ; Iraji Zad, A ; Mohajerzadeh, S ; Vosoughi, M ; Darbari, S ; Koohsorkhi, J ; Mehran, M ; Sharif University of Technology
    2012
    Abstract
    In this report, the fabrication of vertically aligned carbon nanotube nanoelectrode array (VACNT-NEA) by photolithography method is presented. Electrochemical impedance spectroscopy as well as cyclic voltammetry was performed to characterize the arrays with respect to different diffusion regimes. The fabricated array illustrated sigmoidal cyclic voltammogram with steady state current dominated by radial diffusion. The fabricated VACNT-NEA and high density VACNTs were employed as electrochemical glutamate biosensors. Glutamate dehydrogenase is covalently attached to the tip of CNTs. The voltammetric biosensor, based on high density VACNTs, exhibits a sensitivity of 0.976 mA mM-1 cm-2 in the... 

    Electrochemical sensors based on functionalized carbon nanotubes modified with platinum nanoparticles for the detection of sulfide ions in aqueous media

    , Article Journal of Chemical Sciences ; Volume 131, Issue 3 , 2019 ; 09743626 (ISSN) Mohajeri, S ; Dolati, A ; Salmani Rezaie , S ; Sharif University of Technology
    Springer  2019
    Abstract
    Abstract : Vertically aligned carbon nanotube (CNT) arrays were synthesized by thermal chemical vapor deposition (CVD) on stainless steel substrates coated by cobalt nanoparticles as catalyst. Morphological and elemental analyses conducted by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed that bamboo-like CNTs were blocked by Co nanoparticles at the tips. The fabricated nanotubes underwent functionalization by electrochemical oxidation in sulfuric acid, and the subsequent structural studies, as well as Fourier transform infrared (FTIR) spectroscopy confirmed that the tips of functionalized CNTs were opened while oxygenated functional groups were...