Loading...
Search for: aliphatic-hydrocarbon
0.007 seconds

    How do ions contribute to brine-hydrophobic hydrocarbon Interfaces? An in silico study

    , Article Journal of colloid and interface science ; Volume 575 , 2020 , Pages 337-346 Badizad, M. H ; Koleini, M. M ; Hartkamp, R ; Ayatollahi, S ; Ghazanfari, M. H ; Sharif University of Technology
    NLM (Medline)  2020
    Abstract
    HYPOTHESIS: The saltwater-oil interface is of broad implication in geochemistry and petroleum disciplines. To date, the main focus has been on the surface contribution of polar, heavy compounds of crude oil, widely neglecting the role of non-polar hydrocarbons. However, non-polar compounds are expected to contribute to characteristics of oil-brine interfaces. METHODOLOGY: Utilizing molecular dynamics simulation, we aim to characterize ion behavior adjacent to hydrophobic organic phases. Concerning natural environments, NaCl, CaCl2 and Na2SO4 electrolytes at low (5 wt%) and high (15 wt%) concentrations were brought in contact with heptane and/or toluene which account for aliphatic and... 

    Applicability of membrane reactor technology in industrial hydrogen producing reactions: Current effort and future directions

    , Article Journal of Industrial and Engineering Chemistry ; Volume 104 , 2021 , Pages 212-230 ; 1226086X (ISSN) Mamivand, S ; Binazadeh, M ; Sohrabi, R ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2021
    Abstract
    Potent carbon-neutral energy carriers bring a vital solution for sustained industrialization and environmental protection. Hydrogen as a novel zero-emission energy carrier offers more than twice energy per unit mass compared to other fuels. Membrane reactor technology transforms gray hydrogen to blue by selective hydrogen separation and carbon dioxide capture from the product mixture. Moreover, improved reactant conversion during reversible steam reforming of methane, methanol, and ethanol; water gas-shift; and dehydrogenation of cyclic and aliphatic hydrocarbons as well as enhanced hydrogen yield are results of selective and distributed hydrogen separation from membrane reactor. In this... 

    Efficient biodegradation of naphthalene by a newly characterized indigenous achromobacter sp. FBHYA2 isolated from Tehran oil refinery complex

    , Article Water Science and Technology ; Volume 66, Issue 3 , March , 2012 , Pages 594-602 ; 02731223 (ISSN) Farjadfard, S ; Borghei, S. M ; Hassani, A. H ; Yakhchali, B ; Ardjmand, M ; Zeinali, M ; Sharif University of Technology
    IWA Pub  2012
    Abstract
    A bacterial strain, FBHYA2, capable of degrading naphthalene, was isolated from the American Petroleum Institute (API) separator of the Tehran Oil Refinery Complex (TORC). Strain FBHYA2 was identified as Achromobacter sp. based on physiological and biochemical characteristics and also phylogenetic similarity of 16S rRNA gene sequence. The optimal growth conditions for strain FBHYA2 were pH 6.0, 30°C and 1.0% NaCl. Strain FBHYA2 can utilize naphthalene as the sole source of carbon and energy and was able to degrade naphthalene aerobically very fast, 48 h for 96% removal at 500 mg/L concentration. The physiological response of Achromobacter sp., FBHYA2 to several hydrophobic chemicals... 

    A systematic review of land use regression models for volatile organic compounds

    , Article Atmospheric Environment ; Volume 171 , 2017 , Pages 1-16 ; 13522310 (ISSN) Amini, H ; Yunesian, M ; Hosseini, V ; Schindler, C ; Henderson, S. B ; Künzli, N ; Sharif University of Technology
    Abstract
    Various aspects of land use regression (LUR) models for volatile organic compounds (VOCs) were systematically reviewed. Sixteen studies were identified published between 2002 and 2017. Of these, six were conducted in Canada, five in the USA, two in Spain, and one each in Germany, Italy, and Iran. They were developed for 14 different individual VOCs or groupings: benzene; toluene; ethylbenzene; m-xylene; p-xylene; (m/p)-xylene; o-xylene; total BTEX; 1,3-butadiene; formaldehyde; n-hexane; total hydro carbons; styrene; and acrolein. The models were based on measurements ranging from 22 sites in El Paso (USA) to 179 sites in Tehran (Iran). Only four studies in Rome (Italy), Sabadell (Spain),... 

    Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil

    , Article Journal of Hazardous Materials ; Volume 342 , 2018 , Pages 270-278 ; 03043894 (ISSN) Safdari, M. S ; Kariminia, H. R ; Rahmati, M ; Fazlollahi, F ; Polasko, A ; Mahendra, S ; Wilding, W. V ; Fletcher, T. H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Bioremediation of soil and groundwater sites contaminated by petroleum hydrocarbons is known as a technically viable, cost-effective, and environmentally sustainable technology. The purpose of this study is to investigate laboratory-scale bioremediation of petroleum-hydrocarbon contaminated soil through development of eight bioreactors, two bioreactors for each bioremediation mode. The modes were: (1) natural attenuation (NA); (2) biostimulation (BS) with oxygen and nutrients; (3) bioaugmentation (BA) with hydrocarbon degrading isolates; (4) a combination of biostimulation and bioaugmentation (BS-BA). Total petroleum hydrocarbons (TPH) mass balance over the bioreactors showed about 2% of...