Loading...
Search for: alkali-metals
0.009 seconds

    Influence of cation-heteroatom (Li+, Na+, and K +) interaction on the structural and thermochemical properties of 2′-deoxythymidine nucleoside: Qtaim and NBO analyzes

    , Article Journal of Theoretical and Computational Chemistry ; Volume 12, Issue 2 , December , 2013 ; 02196336 (ISSN) Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    2013
    Abstract
    Density functional theory (DFT) method and B3LYP/6-311++G(d,p) basis set were used to determine coordination geometries, binding strength, and metal ion affinity (MIA) for interaction of 2′-deoxythymidine (dT) with alkali metal cations including Li+, Na+, and K+. Calculations demonstrated that the interaction of dT with these cations is tri-coordinated η (O2, O4′, O5′). Among these cations, Li + cation exhibited the most tendency for interaction with dT. Cations via their interaction with dT can affect the N-glycosidic bond length, the values of pseudorotation of the sugar ring, the orientation of base unit with respect to sugar ring and the acidity of O5′H, O3′H, and N3H groups in 2′-dT... 

    Production of Biodiesel Using Eggshell as Catalyst

    , M.Sc. Thesis Sharif University of Technology Khatibi, Maryam (Author) ; Khorasheh, Farhad (Supervisor) ; Larimi, Afsaneh Sadat (Supervisor)
    Abstract
    The aim of this project is to investigate and synthesize CaO-based nanocatalysts derived from chicken eggshell calcination with alkali metals and sodium-potassium compounds promoters used in the transesterification reaction of canola oil and methanol. Sections of this thesis include the synthesis of nanocatalysts, catalyst characterization tests, and investigation of reaction under optimal conditions. Two groups of catalysts containing different weight percentages of alkali metals based on CaO and 1 %wt sodium-potassium based on CaO with different weight percentages of these two elements were synthesized by wet impregnation method and used in the reaction under optimum condition. Catalyst... 

    Influence of metal complexation on acidity of cytosine nucleosides: Part I, Li +, Na + and K + cation

    , Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 535-545 ; 10263098 (ISSN) Aliakbar Tehrani, Z ; Fattahi, A ; Pourjavadi, A ; Sharif University of Technology
    2012
    Abstract
    Gas-phase acidities of nucleosides, combined with the knowledge of deprotonation sites, could improve our understanding of chemical reactions to biological systems. In this paper, we mainly focus our attention on the influence of cation coordination on acidities of multiple sites in cytosine nucleosides. The acidities of multiple sites in M +-L (where L represents cytosine nucleosides and M + is an alkali metal ion, including Li +, Na + and K +) complexes have been investigated theoretically, employing B3LY P6-311++G(d,p) basis sets. The geometrical characters, gas-phase acidities, sugar puckering and electronic properties of non-deprotonated and/or deprotonated complexes have been... 

    Pre-deposited alkali (Li, Na, K) chlorides layer for effective doping of CuInSSe thin films as absorber layer in solar cells

    , Article Solar Energy ; Volume 231 , 2022 , Pages 694-704 ; 0038092X (ISSN) Hashemi, M ; Bagher Ghorashi, S. M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    We introduce an effective method for copper indium sulfide selenide (CISSe) doping with different alkali metals (Li, Na and K) based on a pre-deposited alkali chloride layer. A simple and fast spray method is used for pre-deposition of alkali chloride layer (LiCl, NaCl, KCl) on substrate surface before spray pyrolysis deposition of copper indium disulfide CuInS2 (CIS) films followed by selenization. The different properties of alkali-doped CISSe films by the alkali chloride pre-deposition (ACPD) method were compared to the post-deposition treatment (PDT) method. Based on FESEM images, a highly compact film with large grains can be obtained for CISSe films doped with K(∼0.72 μm) and Na (∼0.56... 

    Alkali metal cation incorporation in conductive TiO2 nanoflakes with improved photoelectrochemical h2 generation

    , Article ChemElectroChem ; Volume 7, Issue 7 , March , 2020 , Pages 1699-1706 Khorashadizade, E ; Mohajernia, S ; Hejazi, S ; Mehdipour, H ; Naseri, N ; Moradlou, O ; Liu, N ; Moshfegh, A. Z ; Schmuki, P ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    In this research, we investigate the effect of alkali metal cations including Li, Na and Cs in hydrothermal solution on the morphology, stability, and photoactivity of nanostructured TiO2 nanoflakes as a photoanode. The TiO2 nanoflakes are formed through hydrothermal treatment of Ti foil in 1.0 M LiOH, NaOH or CsOH at 100 °C for 3 h. By subsequent thermal reduction of the structure in an optimized Ar/H2 environment, conductive TiO2 nanoflakes were formed. The reduction treatment remarkably improves the photocurrent density of the TiO2 nanoflakes and has the highest impact on the sample treated in the NaOH alkali solution. For the nanoflakes produced in NaOH alkali solution, the bandgap is... 

    Charge-transfer complexes of 4-nitrocatechol with some amino alcohols

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 75, Issue 3 , 2010 , Pages 970-977 ; 13861425 (ISSN) Baniyaghoob, S ; Najafpour, M. M ; Boghaei, D. M ; Sharif University of Technology
    2010
    Abstract
    Charge-transfer (CT) complexes formed from the reactions of 4-nitropyrocatechol (4-nCat) as an electron acceptor with four amino alcohols: 2-aminoethanol, 1-amino-2-propanol, 4-aminobutanol and N-(2-hydroxyethyl)-1,3-diaminopropane (NHEDAP) as electron donors, have been studied spectrophotometrically in H2O and H2O/EtOH at 20, 25, 30, 35 and 40 °C. The calculated values of the oscillator strength and transition moment confirm the formation of CT-complexes. The thermodynamic and spectroscopic parameters were also evaluated for the formation of CT-complexes. The equilibrium constants ranged from 9.00 to 2.20 l mol-1 (M-1). These interactions are exothermic and have relatively large standard...