Loading...
Search for: alkaline-phosphatase-activity
0.008 seconds

    Effects of Sr and Mg dopants on biological and mechanical properties of SiO2–CaO–P2O5 bioactive glass

    , Article Ceramics International ; Volume 46, Issue 14 , 2020 , Pages 22674-22682 Sharifianjazi, F ; Moradi, M ; Abouchenari, A ; Pakseresht, A.H ; Esmaeilkhanian, A ; Shokouhimehr, M ; Shahedi Asl, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, the effects of Sr and Mg were investigated on mechanical and biological properties of 58S bioactive glass (BG). SiO2-P2O5-CaO BG with different contents of Sr and Mg were synthesized via the sol-gel method and immersed in simulated body fluid (SBF) for several days to explore their biocompatibility. Precise analyses of the BG using X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy showed that the Mg-doped BG containing 8 wt % MgO possessed better biocompatibility. It was also found that mechanical properties of the BG could be improved by increasing the amounts of MgO and SrO. Both 5Sr-BG and 8Mg-BG samples did not exhibit any... 

    Physical, morphological, and biological studies on PLA/nHA composite nanofibrous webs containing equisetum arvense herbal extract for bone tissue engineering

    , Article Journal of Applied Polymer Science ; Volume 134, Issue 39 , 2017 ; 00218995 (ISSN) Khakestani, M ; Jafari, S. H ; Zahedi, P ; Bagheri, R ; Hajiaghaee, R ; Sharif University of Technology
    Abstract
    A series of herbal extract incorporated into poly(lactic acid) (PLA) composite nanofibrous scaffolds were successfully prepared by using electrospinning technique. Equisetum arvense extract (EE) and nanohydroxyapatite (nHA) in different quantities were loaded into PLA solution to fabricate composite nanofibrous webs under various electrospinning conditions. Uniform nanofibers were obtained with an average diameter of 157 ± 47 nm in the case of those containing the herbal extract. Characterization of the webs was carried out by means of Fourier transform infrared (FTIR) spectroscopy, field emission-scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and... 

    Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior

    , Article Materials Science and Engineering C ; Volume 103 , 2019 ; 09284931 (ISSN) Razaghzadeh Bidgoli, M ; Alemzadeh, I ; Tamjid, E ; Khafaji, M ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In order to regenerate bone defects, bioactive hierarchically scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced nutrient transport and diffusion. In this study, novel hierarchically porous silk fibroin (SF) and silk fibroin-bioactive glass (SF-BG) composite were fabricated with controlled architecture and interconnected structure, by combining indirect three-dimensional (3D) inkjet printing and freeze-drying methods. Further, the effect of 45S5 Bioactive glass particles of different sizes (<100 nm and 6 μm) on mechanical strength and cell behavior was investigated. The results demonstrated that the hierarchical structure in this scaffold was... 

    Fabrication of biocompatible titanium scaffolds using space holder technique

    , Article Journal of Materials Science: Materials in Medicine ; Volume 23, Issue 10 , 2012 , Pages 2483-2488 ; 09574530 (ISSN) Dezfuli, S. N ; Sadrnezhaad, S. K ; Shokrgozar, M. A ; Bonakdar, S ; Sharif University of Technology
    Springer  2012
    Abstract
    Open-pore titanium scaffolds were fabricated by sintering of compressed mixtures of TiH1.924 and urea. Spherical and irregular shaped space holders were used to investigate the effect of pore shape on cellular behavior. After removal of the space holder, the shape of the spacers was replicated to the pores. Average diameter of the pores was in the range of 300-600 lm. SEM images showed that titanium hydride resulted in higher surface roughness and larger micro porosities than pure titanium. In vitro evaluationswere carried out by using MTT assay, measuring alkaline phosphatase activity and alizarin red staining in flow perfusion bioreactor for cell culture. Observations revealed excellent... 

    Carbon-based nanocomposite decorated with bioactive glass and CoNi2S4 nanoparticles with potential for bone tissue engineering

    , Article OpenNano ; Volume 8 , 2022 ; 23529520 (ISSN) Bagherzadeh, M ; Aldhaher, A ; Ahmadi, S ; Baheiraei, N ; Rabiee, N ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    In this work, for the first time, different forms of nanocomposites based on rGO and MWCNT were prepared in conjoining with the bioactive glass (BioGlass). In the carbonic layers, a highly toxic nanoparticle, CoNi2S4, was intercalated, and the role of this nanoparticle in the alkaline phosphatase activity, relative cell viability on different cell lines, and also the effect on the cell walls and cell morphologies were investigated. From another perspective, the ability of the chemotherapy drug loading to the prepared nanocomposites was investigated, and the use of leaf extracts was thought of as a green method to lower the cytotoxicity and regulate the genotoxicity of the generated...