Loading...
Search for: alumina-copper
0.005 seconds

    Abnormal grain growth in alumina dispersion-strengthened copper produced by an internal oxidation process

    , Article Scripta Materialia ; Volume 58, Issue 11 , 2008 , Pages 966-969 ; 13596462 (ISSN) Afshar, A ; Simchi, A ; Sharif University of Technology
    2008
    Abstract
    Cu-2.7 vol.% Al2O3 (15 nm) composite was synthesized by an internal oxidation and hot extrusion process. The grain growth at elevated temperatures was studied and compared with extruded copper powder. Abnormal grain growth via a mechanism analogous to that of site-saturated phase transformation was observed. The critical grain size for the abnormal growth was determined to be 1.1 ± 0.2 μm. The growth rate decreased with time until the grain size approaching a final value ranging from 7.9 to 13.3 μm depending on the temperature. © 2008 Acta Materialia Inc  

    Flow stress dependence on the grain size in alumina dispersion-strengthened copper with a bimodal grain size distribution

    , Article Materials Science and Engineering A ; Volume 518, Issue 1-2 , 2009 , Pages 41-46 ; 09215093 (ISSN) Afshar, A ; Simchi, A ; Sharif University of Technology
    2009
    Abstract
    The grain size dependence of flow stress in Cu-2.7 vol.%Al2O3 (15 nm) composite with a bimodal structure was studied. It is shown that the yield strength obeys the Hall-Petch equation when an appropriate value of average grain size based on the "rule of mixture" is employed. The Hall-Petch constants (σ0ε and kε) are proportional to strain as ε0.5. An equation for flow stress as a function of true strain and average grain size is proposed. The effect of alumina nanoparticles on the yield strength is shown to be related to large amounts of dislocations density. © 2009 Elsevier B.V. All rights reserved  

    Alumina - copper eutectic bond strength: Contribution of preoxidation, cuprous oxides particles, and pores

    , Article 16th International Federation for Heat Treatment and Surface Engineering Congress, Brisbane, QLD, 30 October 2007 through 2 November 2007 ; Volume 32 , 2007 , Pages 90-97 ; 08832900 (ISSN) Ghasemi, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of cupric oxide layer thickness, cuprous oxide particles, and pores on mechanical properties and microstructure of alumina-copper eutectic bond have been investigated. The furnace atmosphere in the first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the furnace atmosphere was same as the first stage unless that in cooling between 900-1000 °C, the hydrogen gas was purged in furnace atmosphere. Finally, in the last stage a vacuum furnace with 5 × 10 -8 atm pressure was chosen for bonding procedure. Peel strength of first stage specimens shows that cupric oxide layer with 320 ± 25 nm thick generates the maximum peel strength (13.1 ± 0.3... 

    Alumina-copper eutectic bond strength: contribution of preoxidation, cuprous oxides particles and pores

    , Article Scientia Iranica ; Volume 16, Issue 3 B , 2009 , Pages 263-268 ; 10263098 (ISSN) Ghasemi, H ; Faghihi Sani, M. A ; Kokabi, A. H ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of cupric oxide layer thickness, cuprous oxide particles and pores on the mechanical properties and micro structure of an alumina-copper eutectic bond have been investigated. The furnace, atmosphere in the. first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the. furnace atmosphere was the. same as the first stage except that the cooling interval was between 900-100l°C and the hydrogen gas was injected into the. furnace, atmosphere. Finally, in the last stage, a vacuum furnace with 5 × 10-8 atra pressure was chosen for the bonding procedure. The peel strength of first stage specimens shows that a, cupric oxide layer with 320 ± 25 ran... 

    The physical and mechanical properties of Cu/Al2O3 composite synthesized by internal oxidation

    , Article Materials Science and Technology Conference and Exhibition 2009, MS and T'09, 25 October 2009 through 29 October 2009, Pittsburgh, PA ; Volume 3 , 2009 , Pages 1806-1815 ; 9781615676361 (ISBN) Soleimanpour, A. M ; Abachi, P ; Alimardani, N ; Motamen, A ; Sharif University of Technology
    Abstract
    The internal Oxidation introduces a practical method for producing copper matrix composites reinforced by alumina particles. The mechanical and physical properties of alumina reinforced copper composites and alloy specimens were investigated. This experiment involves casting of Cu-Al alloys with 0.37, 1, 2 and 3 weight percent of aluminium in non-oxidizing atmosphere with pure oxygen free copper. The composite specimens produced after internal oxidation process at 950°C for 10 hours in sealed alumina crucible. The microstructures of composite specimens were studied after internal oxidation using SEM and AFM. The hardness and electrical resistivity tests were measured. The wear properties of...