Loading...
Search for: alumina-nanoparticle
0.004 seconds

    Study plasma electrolytic oxidation process and characterization of coatings formed in an alumina nanoparticle suspension

    , Article Vacuum ; Vol. 108, issue , 2014 , p. 12-19 Sarbishei, S ; Faghihi Sani, M. A ; Mohammadi, M. R ; Sharif University of Technology
    Abstract
    Alumina-silicate composite coatings were formed on titanium substrate by plasma electrolytic oxidation (PEO) process using a silicate-based electrolyte containing alumina nanoparticles. Microstructure, chemical and phase compositions, and thickness of the coatings were investigated to determine, coating mechanism and probable reactions during the process. The effect of processing time on corrosion resistance of the coatings was investigated using the potentiodynamic polarization test. Barrier layer (TiO2) formation, micro arcs occurrence, and electrolyte ionization were the main stages of PEO coating growth process. Alumina nanoparticles were incorporated into the coating by cataphoretic and... 

    A Comparison of the Effects of Additives Alumina Nanoparticles and Microparticles on Microstructure and Properties of Magnesia-Doloma Refractory

    , M.Sc. Thesis Sharif University of Technology Shahraki, Aziz (Author) ; Nemati, Ali (Supervisor)
    Abstract
    Magnesia-Doloma refractories has advantages such as stability in alkaline environments, clean steel production, resistance to acid slag, good cement kiln coating flexibility, low production cost. It also has some weaknesses such as low resistance to thermal shock and quick hydration. In the present study using Birjand Mines Magnesite powders and Dolomites from Zefreh, Esfahan, Magnesia-Doloma clinkers were pressed under the pressure 90 MP and prepared at 1650⁰C in furnace under air atmosphere. The effect of adding 0, 2, 4, 6, and 8% of the Microparticles and Nanoparticles of α-Alumina on microstructure, physical properties, hydration resistance and Thermal shock resistance was studied. Phase... 

    An Investigation of Alumina Nanoparticles Role on the Performance of Automotive Brake Friction Materials

    , M.Sc. Thesis Sharif University of Technology Etemadi Mehrenjani, Habib (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    The research on the automotive brake composite materials is very extensive due to its complex formulation and the used of diverse variety of materials. While various research activities has been applied in this research group, but there are many unknown areas. This subject with the arrival of new materials, especially nanometer materials, has received increasing attention. In this study, the effect of alumina nanoparticles on the performance of automotive brake friction materials were examined. Generally, alumina (as micro particles) used as the abrasive material for many years in the formulation of composite brake pads. But, the effect of alumina on the nanometer scale hasn't been examined... 

    Effects of alumina nanoparticles concentration on microstructure and corrosion behavior of coatings formed on titanium substrate via PEO process

    , Article Ceramics International ; Volume 42, Issue 7 , May , 2016 , Pages 8789–8797 ; 02728842 (ISSN) Sarbishei, S ; Faghihi Sani, M. A ; Mohammadi, M. R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Plasma electrolytic oxidation (PEO) process was employed to create ceramic coatings on titanium substrate by using silicate-based electrolytes containing different concentrations of alumina nanoparticles (0, 3, 6, and 10. g/lit). The effect of alumina nanoparticles concentration on the morphology, chemical and phase composition of the PEO coatings was investigated by scanning electron microscope, energy dispersive spectrometer, and X-ray diffractometer, respectively.The corrosion behavior of samples was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. SEM, EDS, and XRD analyses illustrated that alumina nanoparticles incorporated into the... 

    Development of porous nanocomposite membranes for gas separation by identifying the effective fabrication parameters with Plackett–Burman experimental design

    , Article Journal of Porous Materials ; Volume 23, Issue 5 , 2016 , Pages 1279-1295 ; 13802224 (ISSN) Farrokhnia, M ; Safekordi, A ; Rashidzadeh, M ; Khanbabaei, G ; Akbari Anari, R ; Rahimpour, M ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this research, Plackett–Burman experimental design was used as a screening method to investigate seven processing factors in the preparation of new polyethersulfone based porous nanocomposite membrane. Polymer concentration, nanoparticle type, nanoparticle concentration, solvent type, solution mixing time, evaporation time, and annealing temperature are variables that were evaluated to fabricate mixed matrix membranes using the evaporation phase inversion method for gas separation. According to obtained results, polymer concentration, nanoparticle concentration, solution mixing time, and evaporation time processing factors had significant effects on gas permeation. In addition, the... 

    Performance improvement of MgO-CaO refractories by the addition of nano-sized Al2O3

    , Article Materials Chemistry and Physics ; Volume 198 , 2017 , Pages 354-359 ; 02540584 (ISSN) Shahraki, A ; Ghasemi kahrizsangi, S ; Nemati, A ; Sharif University of Technology
    Abstract
    Magnesia-dolomite refractories have advantages such as stability in the basic environments, clean steel production, high corrosion resistance, proper covering in the cement furnace, and low production costs. However, their application is restricted due to low hydration resistance. In this research, the effects of nano and micro alumina particles on the microstructure, sintering behavior, and properties of magnesia-dolomite refractories were studied. For this purpose, MgO-CaO refractories were formulated using dolomite and magnetite and 0, 2, 4, 6 and 8 wt percentage nano and micro alumina were added to the formulation. Phase and microstructure analysis of the samples were performed using... 

    Properties of alumina nanoparticle-filled nitrile-butadiene-rubber/ phenolic-resin blend prepared by melt mixing

    , Article Polymer Composites ; Volume 30, Issue 9 , 2009 , Pages 1290-1298 ; 02728397 (ISSN) Faghihi, M ; Shojaei, A ; Sharif University of Technology
    2009
    Abstract
    Effect of alumina nanoparticle (ANP) on the properties of rubber compounds based on nitrile-butadiene-rub- ber (NBR) and NBR/phenolic-resin (PH) blend is examined. To investigate the surface characteristics of the nanoparticles on the performance of nanoalumina- filled compounds, trimethoxyvinylsilane (MVS) is attached chemically on the surface of ANP through an appropriate functionalization process. Various NBR and NBR/Ph compounds filled with ANP and functionalized ANP (f-ANP) are prepared via melt mixing using traditional open two-roll mill. Microscopic analysis carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveals good dispersion of... 

    Synthesis and Evaluation of Alumina Nanocomposite Membranes for Gas Separation

    , M.Sc. Thesis Sharif University of Technology Farrokhnia, Mohammad Reza (Author) ; Safekordi, Aliakbar (Supervisor) ; Rashidzadeh, Mehdi (Supervisor) ; Khanbabaei, Ghader (Co-Advisor) ; Rahimpour, Mohammad Reza (Co-Advisor)
    Abstract
    Membrane processes are accounted as the newest technology for gas separation and nowadays are more applicable in different petroleum, gas and petrochemical industries because of abundant advantages. One of important application of membrane gas separation technology is syngas adjustment and hydrogen enrichment. In this research, the appropriate alumina nanocomposite membranes for this purpose are prepared and their gas separation performance is investigated. Therefore the mixed matrix membranes, containing the continues polymeric phase polyethersulfone and dispersed phase alumina nanoparticles is synthesized by using methods of experimental design. As the best of our knowledge, there is no... 

    Preparation of HA/Al2O3/MgO Biocompatible Nanocomposite Coating by Electrophoretic Method on 316 Stainless Steel

    , M.Sc. Thesis Sharif University of Technology Azizi, Amir (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    In this research, it has been tried to use alumina and magnesia nanoparticles to hydroxyapatite nano powder, a three-component coating, with corrosion resistance, adhesion and desirable biocompatibility on the 316 stainless steel substrate, by electrophoretic method. It should be applied at 3 voltages of 10, 30 and 50 volts and for 3 minutes. TEA was used as a dispersing agent and ethanol as a solvent to prepare the suspension. Alumina nano powder was added to nanohydroxyapat in two amounts of 10 and 20% by weight and 20% was optimized as the amount, and magnesia nano powder was added to the composition in three amounts of 1, 3 and 5% by weight, which was 3% by weight of the results Was... 

    Effect of alumina nanoparticle on the tribological performance of automotive brake friction materials

    , Article Journal of Reinforced Plastics and Composites ; Vol. 33, issue. 2 , October , 2014 , pp. 166-178 ; ISSN: 07316844 Etemadi, H ; Shojaei, A ; Jahanmard, P ; Sharif University of Technology
    Abstract
    Brake friction materials filled with nanoalumina were produced by both conventional and solvent-assisted mixing methods. It was shown that nanoalumina loading led to the reduction of friction coefficient and improvement in mechanical, wear and thermal behaviors. Such behavior was attributed to the role of nanoalumina in producing stable friction layer and easy conduction path in matrix. It was postulated that nanoalumina is able to attach on the surface of microalumina facilitating the rolling of microalumina at interface. Solution-processed samples exhibited lower improvement in tribological and mechanical properties compared to the conventional mixing due to the limited interaction between... 

    Mechanical-activated phase formation of niti in the presence of nanoparticles

    , Article Nano ; Volume 8, Issue 5 , 2013 ; 17932920 (ISSN) Farvizi, M ; Ebadzadeh, T ; Vaezi, M. R ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    2013
    Abstract
    Effect of Al2O3 nanoparticles (80 nm) on the grain structure and phase formation in Ni-50Ti system during high-energy mechanical alloying (MA) was studied. While the formation of NiTi B2 phase occurs progressively during MA, it is shown that the hard inclusions cause abrupt phase formation at short milling times, particularly at higher nano-Al 2O3 contents. High-resolution transmission electron microscopy showed significant grain refinement in the presence of alumina nanoparticles to sizes less than 10 nm, which precedes the formation of semicrystalline structure and reduces the diffusion length and thus accelerates the phase formation. The composite powder reached steady-state MA condition... 

    Effect of high energy ball milling on compressibility and sintering behavior of alumina nanoparticles

    , Article Ceramics International ; Volume 38, Issue 4 , May , 2012 , Pages 2627-2632 ; 02728842 (ISSN) Eskandari, A ; Aminzare, M ; Razavi Hesabi, Z ; Aboutalebi, S. H ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The effect of high-energy ball milling on the textural evolution of alumina nanopowders (compaction response, sinter-ability, grain growth and the degree of agglomeration) during post sintering process is studied. The applied pressure required for the breakage of the agglomerates (P y) during milling was estimated and the key elements of compressibility (i.e. critical pressure (P cr) and compressibility (b)) were calculated. Based on the results, the fracture point of the agglomerates decreased from 150 to 75 MPa with prolonged milling time from 3 to 60 min. Furthermore, the powders were formed by different shaping methods such as cold isostatic press (CIP) and uniaxial press (UP) to better... 

    Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles

    , Article Materials Chemistry and Physics ; Vol 178 , August , 2016 , Pages 119–127 ; 02540584 (ISSN) Ezatpour, H. R ; Torabi Parizi, M ; Sajjadi, S. A ; Ebrahimi, G. R ; Chaichi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Aluminum metal-matrix nanocomposites (AMMNCs) fabricated by conventional stir-casting process usually show high porosity and poor distribution of nanoparticles within the matrix. In the current study, for the improvement of nanoparticles distribution in the aluminum matrix and enhancement of the mechanical properties, a mixture of Al/nano-Al2O3 powders were injected by pure argon gas into the molten 7075 aluminum alloy and this mixture was extruded at high temperature. Mechanical behavior of the final product was investigated by tensile and compression tests, hardness measurements, Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and Optical... 

    Effect of alumina nanoparticles on hot strength and deformation behaviour of Al-5vol% Al 2O 3 nanocomposite: Experimental study and modelling

    , Article Journal of Nanoscience and Nanotechnology ; Volume 10, Issue 4 , 2010 , Pages 2641-2645 ; 15334880 (ISSN) Razavi Hesabi, Z ; Sanjari, M ; Simchi, A ; Seyed Reihani, S. M ; Simancik, F ; Sharif University of Technology
    2010
    Abstract
    Hot deformation behaviour of as-extruded Al-5vol% Al 2O 3 nanocomposite was investigated at temperatures range 350 to 450°C and initial strain rates of 5.5 × 10 -4 to 10 -1 s -1 and compared with those of monolithic (unreinforced) aluminium. Both extruded materials exhibited work-softening during hot deformation. The results showed that with the addition of 5 vol% alumina nanoparticles with an average particle size of 35 nm, a significant increase in compressive strength of aluminium was obtained. For instance, at 350°C an abrupt rise of ∼340% in hot strength of the nanocomposite relative to monolithic aluminium was achieved. TEM investigation of microstructure of the nanocomposite after hot... 

    Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles

    , Article Materials Chemistry and Physics ; Volume 178 , 2016 , Pages 119-127 ; 02540584 (ISSN) Ezatpour, H. R ; Torabi Parizi, M ; Sajjadi, S. A ; Ebrahimi, G. R ; Chaichi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Aluminum metal-matrix nanocomposites (AMMNCs) fabricated by conventional stir-casting process usually show high porosity and poor distribution of nanoparticles within the matrix. In the current study, for the improvement of nanoparticles distribution in the aluminum matrix and enhancement of the mechanical properties, a mixture of Al/nano-Al2O3 powders were injected by pure argon gas into the molten 7075 aluminum alloy and this mixture was extruded at high temperature. Mechanical behavior of the final product was investigated by tensile and compression tests, hardness measurements, Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and Optical... 

    Fabrication and characterisation of ultrafine-grained Al-5vol%Al 2O3 nanocomposite

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 341-351 ; 17469392 (ISSN) Razavi Hesabi, Z ; Simchi, A ; Seyed Reihani, S. M ; Simancik, F ; Sharif University of Technology
    Abstract
    Nanocrystalline Al-5vol%Al2O3 nanocomposite was synthesised by mechanical milling of a mixture containing nanometric alumina with an average particle size of 35 nm. Morphology of as-synthesised powder was investigated by SEM while crystallite size of Al matrix was determined by XRD analysis. The results confirmed formation of nanocrystalline Al matrix induced by severe plastic deformation during mechanical milling. Nanocomposite bars were produced by hot powder extrusion route. TEM investigation of as-extruded nanocomposite revealed formation of elongated grains along the extrusion direction decorated by alumina nanoparticles. Tensile and compressive properties of as-extruded nanocomposite... 

    Flow stress dependence on the grain size in alumina dispersion-strengthened copper with a bimodal grain size distribution

    , Article Materials Science and Engineering A ; Volume 518, Issue 1-2 , 2009 , Pages 41-46 ; 09215093 (ISSN) Afshar, A ; Simchi, A ; Sharif University of Technology
    2009
    Abstract
    The grain size dependence of flow stress in Cu-2.7 vol.%Al2O3 (15 nm) composite with a bimodal structure was studied. It is shown that the yield strength obeys the Hall-Petch equation when an appropriate value of average grain size based on the "rule of mixture" is employed. The Hall-Petch constants (σ0ε and kε) are proportional to strain as ε0.5. An equation for flow stress as a function of true strain and average grain size is proposed. The effect of alumina nanoparticles on the yield strength is shown to be related to large amounts of dislocations density. © 2009 Elsevier B.V. All rights reserved  

    Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly (methyl methacrylate)-based nanocomposites prepared by friction stir processing

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 79 , March , 2018 , Pages 246-253 ; 17516161 (ISSN) Aghajani Derazkola, H ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, alumina-reinforced poly(methyl methacrylate) nanocomposites (PMMA/Al2O3) containing up to 20 vol% nanoparticles with an average diameter of 50 nm were prepared by friction stir processing. The effects of nanoparticle volume fraction on the microstructural features and mechanical properties of PMMA were studied. It is shown that by using a frustum pin tool and employing an appropriate processing condition, i.e. a rotational speed of 1600 rpm/min and transverse velocity of 120 mm/min, defect free nanocomposites at microscale with fine distribution of the nanoparticles can successfully been prepared. Mechanical evaluations including tensile, flexural, hardness and impact tests...