Loading...
Search for: american-petroleum-institute
0.011 seconds

    Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm

    , Article Chemical Engineering Research and Design ; Volume 91, Issue 5 , 2013 , Pages 883-903 ; 02638762 (ISSN) Soleimani, R ; Shoushtari, N. A ; Mirza, B ; Salahi, A ; Sharif University of Technology
    2013
    Abstract
    In this work, treatment of oily wastewaters with commercial polyacrylonitrile (PAN) ultrafiltration (UF) membranes was investigated. In order to do these experiments, the outlet wastewater of the API (American Petroleum Institute) unit of Tehran refinery, is used as the feed. The purpose of this paper was to predict the permeation flux and fouling resistance, by applying artificial neural networks (ANNs), and then to optimize the operating conditions in separation of oil from industrial oily wastewaters, including trans-membrane pressure (TMP), cross-flow velocity (CFV), feed temperature and pH, so that a maximum permeation flux accompanied by a minimum fouling resistance, was acquired by... 

    Comparison of ultrasonic wave radiation effects on asphaltene aggregation in toluene-pentane mixture between heavy and extra heavy crude oils

    , Article Journal of Energy Resources Technology, Transactions of the ASME ; Volume 134, Issue 2 , 2012 ; 01950738 (ISSN) Mousavi, S. M. R ; Najafi, I ; Ghazanfari, M. H ; Amani, M ; Sharif University of Technology
    2012
    Abstract
    In this study, it is aimed to compare the efficiency of ultrasonic wave technology on asphaltene flocculation inhibition of crude oils with different American Petroleum Institute (API) gravities. A set of confocal microscopy test is performed and a series of statistical analysis is done. According to the results of this study, there is an optimum radiation time for both crudes at which the viscosity and the flocculation rate of asphaltenic crude oils reduces to its minimum. This optimum appears at later times of radiation for extra heavy oil. Also, it is shown that the rate of changes in the properties measured in this study is sharper for extra heavy crude oil. It could be concluded that... 

    Efficient biodegradation of naphthalene by a newly characterized indigenous achromobacter sp. FBHYA2 isolated from Tehran oil refinery complex

    , Article Water Science and Technology ; Volume 66, Issue 3 , March , 2012 , Pages 594-602 ; 02731223 (ISSN) Farjadfard, S ; Borghei, S. M ; Hassani, A. H ; Yakhchali, B ; Ardjmand, M ; Zeinali, M ; Sharif University of Technology
    IWA Pub  2012
    Abstract
    A bacterial strain, FBHYA2, capable of degrading naphthalene, was isolated from the American Petroleum Institute (API) separator of the Tehran Oil Refinery Complex (TORC). Strain FBHYA2 was identified as Achromobacter sp. based on physiological and biochemical characteristics and also phylogenetic similarity of 16S rRNA gene sequence. The optimal growth conditions for strain FBHYA2 were pH 6.0, 30°C and 1.0% NaCl. Strain FBHYA2 can utilize naphthalene as the sole source of carbon and energy and was able to degrade naphthalene aerobically very fast, 48 h for 96% removal at 500 mg/L concentration. The physiological response of Achromobacter sp., FBHYA2 to several hydrophobic chemicals...