Search for: amperometric-biosensor
0.006 seconds

    Two nanostructured polymers: Polyaniline nanofibers and new linear-dendritic matrix of poly(citric acid)-block-poly(ethylene glycol) copolymers for environmental monitoring in novel biosensors

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 62, Issue 7 , Jul , 2013 , Pages 377-383 ; 00914037 (ISSN) Shamloo, A ; Vossoughi, M ; Alemzadeh, I ; Naeini, A. T ; Darvish, M ; Sharif University of Technology
    In this work two phenol biosensors, one based on polyaniline nanofibers (PNFs) and the other based on the newly created and introduced linear-dendritic matrix of poly(citric acid)-block-poly(ethylene glycol) copolymers (PCA-PEG-PCA), were chemically modified with horseradish peroxidase (HRP) enzyme. These phenol biosensors showed an oxidation peak at 0.55 V. The amperometric response for biosensors based on PNFs showed a linear response range from 2.5 × 10-6 to 2.5 × 10-5 mol/L, with a detection limit of 2.5 M phenol. Also, the amperometric response for a biosensor based on PCA-PEG-PCA showed a linear response range from 2.5 × 10-6 to 4 × 10-5 mol/L, with a detection limit of 1.5 M phenol  

    Novel microfluidic graphene oxide–protein amperometric biosensor for detecting sulfur compounds

    , Article Biotechnology and Applied Biochemistry ; Volume 66, Issue 3 , 2019 , Pages 353-360 ; 08854513 (ISSN) Ghaemi, A ; Abdi, K ; Javadi, S ; Shehneh, M. Z ; Yazdian, F ; Omidi, M ; Rashedi, H ; Haghiralsadat, B. F ; Asayeshnaeini, O ; Sharif University of Technology
    Wiley-Blackwell Publishing Ltd  2019
    Sulfur compounds are essential for many industries and organisms; however, they cause serious respiratory problems in human beings. Therefore, determination of sulfur concentration is of paramount importance. The research approach in the field of detecting contaminants has led to smaller systems that provide faster and more effective ways for diagnosis purposes. In this study, a novel portable amperometric graphene oxide–protein biosensor platform is investigated. The main characteristic of this structure is the implementation of a microfluidic configuration. With albumin metalloprotein as the biorecognition element, graphene oxide was synthesized and characterized by transmission electron... 

    Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor

    , Article Biosensors and Bioelectronics ; Volume 35, Issue 1 , 2012 , Pages 297-301 ; 09565663 (ISSN) Savizi, I. S. P ; Kariminia, H. R ; Ghadiri, M ; Roosta Azad, R ; Sharif University of Technology
    In the present work, an amperometric inhibition biosensor for the determination of sulfide has been fabricated by immobilizing Coprinus cinereus peroxidase (CIP) on the surface of screen printed electrode (SPE). Chitosan/acrylamide was applied for immobilization of peroxidase on the working electrode. The amperometric measurement was performed at an applied potential of -150. mV versus Ag/AgCl with a scan rate of 100. mV in the presence of hydroquinone as electron mediator and 0.1. M phosphate buffer solution of pH 6.5. The variables influencing the performance of sensor including the amount of substrate, mediator concentration and electrolyte pH were optimized. The determination of sulfide... 

    A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation

    , Article Bioelectrochemistry ; Volume 122 , 2018 , Pages 51-60 ; 15675394 (ISSN) Kalantar, M ; Mardanpour, M. M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier B.V  2018
    Bacterial transport parameters play a fundamental role in microbial population dynamics, biofilm formation and bacteria dispersion. In this study, the novel model was extended based on the capability of microsized microbial fuel cells (MFCs) as amperometric biosensors to predict the cells' chemotactic and bioelectrochemical properties. The model prediction results coincide with the experimental data of Shewanella oneidensis and chemotaxis mutant of P. aeruginosa bdlA and pilT strains, indicating the complementary role of numerical predictions for bioscreening applications of microsized MFCs. Considering the general mechanisms for electron transfer, substrate biodegradation, microbial growth...