Loading...
Search for: amyloid-beta-peptides
0.003 seconds

    Increase in the β-sheet character of an amyloidogenic peptide upon adsorption onto gold and silver surfaces

    , Article ChemPhysChem ; Volume 18, Issue 5 , 2017 , Pages 526-536 ; 14394235 (ISSN) Soltani, N ; Gholami, M. R ; Sharif University of Technology
    Wiley-VCH Verlag  2017
    Abstract
    Fibrillation of amyloid beta (Aβ) peptide is the hallmark of Alzheimer's disease. Given that interactions at the bio–nano interface affect the fibrillation tendency of this peptide, an understanding of the interactions at Aβ peptide–inorganic surfaces on the microscopic level can help to determine the possible neurotoxicity of nanoparticles. Here, the interactions between a fibril-forming peptide, Aβ25–35, and (111) and (100) facets of gold and silver surfaces have been studied by conducting atomistic molecular dynamics simulations. The obtained results indicate that the adsorption onto gold and silver surfaces force the peptide into the β-sheet-rich conformations, which is prone to... 

    Physiological temperature has a crucial role in amyloid beta in the absence and presence of hydrophobic and hydrophilic nanoparticles

    , Article ACS Chemical Neuroscience ; Volume 4, Issue 3 , December , 2013 , Pages 375-378 ; 19487193 (ISSN) Ghavami, M ; Rezaei, M ; Ejtehadi, R ; Lotfi, M ; Shokrgozar, M. A ; Abd Emamy, B ; Raush, J ; Mahmoudi, M ; Sharif University of Technology
    2013
    Abstract
    Amyloid beta fibrillation can lead to major disorder of neurons processes and is associated with several neuronal diseases (e.g., Alzheimer's disease). We report here an importance of slight temperature changes, in the physiological range (35-42 °C), on the amyloid fibrillation process in the presence and absence of hydrophilic (silica) and hydrophobic (polystyrene) nanoparticles (NPs). The results highlight the fact that slight increases in temperature can induce inhibitory and acceleratory effects of hydrophobic and hydrophilic NPs on the fibrillation process, respectively. Using further in vivo considerations, the outcomes of this study can be used for considerable modifications on the... 

    Graphene oxide strongly inhibits amyloid beta fibrillation

    , Article Nanoscale ; Volume 4, Issue 23 , 2012 , Pages 7322-7325 ; 20403364 (ISSN) Mahmoudi, M ; Akhavan, O ; Ghavami, M ; Rezaee, F ; Ghiasi, S. M. A ; Sharif University of Technology
    2012
    Abstract
    Since amyloid beta fibrillation (AβF) plays an important role in the development of neurodegenerative diseases, we investigated the effect of graphene oxide (GO) and their protein-coated surfaces on the kinetics of Aβ fibrillation in the aqueous solution. We showed that GO and their protein-covered surfaces delay the AβF process via adsorption of amyloid monomers. Also, the large available surface of GO sheets can delay the AβF process by adsorption of amyloid monomers. The inhibitory effect of the GO sheet was increased when we increase the concentration from 10% (in vitro; stimulated media) to 100% (in vivo; stimulated media). Conclusion: our results revealed that GO and their surface... 

    Protein fibrillation and nanoparticle interactions: Opportunities and challenges

    , Article Nanoscale ; Volume 5, Issue 7 , Jan , 2013 , Pages 2570-2588 ; 20403364 (ISSN) Mahmoudi, M ; Kalhor, H. R ; Laurent, S ; Lynch, I ; Sharif University of Technology
    2013
    Abstract
    Due to their ultra-small size, nanoparticles (NPs) have distinct properties compared with the bulk form of the same materials. These properties are rapidly revolutionizing many areas of medicine and technology. NPs are recognized as promising and powerful tools to fight against the human brain diseases such as multiple sclerosis or Alzheimer's disease. In this review, after an introductory part on the nature of protein fibrillation and the existing approaches for its investigations, the effects of NPs on the fibrillation process have been considered. More specifically, the role of biophysicochemical properties of NPs, which define their affinity for protein monomers, unfolded monomers,... 

    Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    , Article Nanoscale ; Volume 7, Issue 11 , Feb , 2015 , Pages 5004-5013 ; 20403364 (ISSN) Mirsadeghi, S ; Dinarvand, R ; Ghahremani, M. H ; Hormozi-Nezhad, M. R ; Mahmoudi, Z ; Hajipour, M. J ; Atyabi, F ; Ghavami, M ; Mahmoudi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called "protein corona") upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal... 

    Label-free detection of β-amyloid peptides (Aβ40 and Aβ42): a colorimetric sensor array for plasma monitoring of alzheimer's disease

    , Article Nanoscale ; Volume 10, Issue 14 , 2018 , Pages 6361-6368 ; 20403364 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Mahmoudi, M ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    Monitoring the ratio of 40- and 42-residue amyloid β peptides (i.e., Aβ40 and Aβ42) in human plasma is considered one of the hallmarks of detection of the early stage of Alzheimer's disease (AD). Therefore, development of a specific, yet non-antibody-based method for simultaneous detection of Aβ40 and Aβ42 may have considerable clinical applications. Here, we developed a 'nanoparticle-based colorimetric sensor array' utilizing label-free gold and silver nanoparticles for visual detection of Aβ42 and Aβ40. Different aggregation behaviors of nanoparticles through their conjugation with Aβ42 and Aβ40 followed by the coordination of Aβ42 and Aβ40 with Cu(ii) led to diverse spectral and color... 

    Evaluating the multifunctionality of a new modulator of zinc-induced Aβ aggregation using a novel computational approach

    , Article Journal of Chemical Information and Modeling ; Volume 61, Issue 3 , 2021 , Pages 1383-1401 ; 15499596 (ISSN) Asadbegi, M ; Shamloo, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The high concentration of zinc metal ions in Aβ aggregations is one of the most cited hallmarks of Alzheimer's disease (AD), and several substantial pieces of evidence emphasize the key role of zinc metal ions in the pathogenesis of AD. In this study, while designing a multifunctional peptide for simultaneous targeting Aβ aggregation and chelating the zinc metal ion, a novel and comprehensive approach is introduced for evaluating the multifunctionality of a multifunctional drugs based on computational methods. The multifunctional peptide consists of inhibitor and chelator domains, which are included in the C-terminal hydrophobic region of Aβ, and the first four amino acids of human albumin.... 

    Review on alzheimer's disease: inhibition of amyloid beta and tau tangle formation

    , Article International Journal of Biological Macromolecules ; Volume 167 , 2021 , Pages 382-394 ; 01418130 (ISSN) Ashrafian, H ; Hadi Zadeh, E ; Hasan Khan, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    It is reported that approximately 40 million people are suffering from dementia, globally. Dementia is a group of symptoms that affect neurons and cause some mental disorders, such as losing memory. Alzheimer's disease (AD) which is known as the most common cause of dementia, is one of the top medical care concerns across the world. Although the exact sources of the disease are not understood, is it believed that aggregation of amyloid-beta (Aβ) outside of neuron cells and tau aggregation or neurofibrillary tangles (NFTs) formation inside the cell may play crucial roles. In this paper, we are going to review studies that targeted inhibition of amyloid plaque and tau protein tangle formation,...