Loading...
Search for: anatase-nanoparticles
0.006 seconds

    Titania nanostructured coating for corrosion mitigation of stainless steel

    , Article Protection of Metals and Physical Chemistry of Surfaces ; Vol. 50, issue. 3 , 2014 , p. 371-377 Barati, N ; Sani, M. A. F ; Sadeghian, Z ; Ghasemi, H ; Sharif University of Technology
    Abstract
    Anatase nanostructured coating has been prepared on 316 L stainless steel by sol-gel dip coating. The topography of the coatings surface has been analyzed using atomic force microscopy. The anticorrosion performance of the coatings has been evaluated using polarization curves. Effects of calcination temperature, withdrawal speed and times of coating on corrosion protection have been studied. The results showed calcination temperature of 400°C and withdrawal speed of 10 cm/min are desirable conditions to achieve high corrosion protection of 316 L stainless steel in chloride containing environments. Coatings with 3 times exhibit better resistance against corrosion in 0.5 molar NaCl solutions.... 

    Photocathodic protection of 316L stainless steel by coating of anatase nanoparticles

    , Article Protection of Metals and Physical Chemistry of Surfaces ; Volume 49, Issue 1 , January , 2013 , Pages 109-112 ; 20702051 (ISSN) Barati, N ; Faghihi Sani, M. A ; Ghasemi, H ; Sharif University of Technology
    2013
    Abstract
    Uniform nanostructure anatase films were coated on 316L stainless steel by the sol-gel dip coating method. Sols with different values of pH were applied. The corrosion protective behavior of coated samples was investigated by electrochemical measurements in 0.5 molar NaCl solutions on samples placed under UV illumination and dark condition using Tafel curves. It was found that in addition to acting as a physical barrier, anatase thin films are more protective under UV illumination due to photocathodic protection. Neutral sols give better protection due to formation of more uniform and less defective coatings  

    The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions

    , Article Ceramics International ; Volume 39, Issue 7 , 2013 , Pages 7343-7353 ; 02728842 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Dye-sensitized solar cells (DSCCs) in the form of mixed nanostructures containing TiO2 nanoparticles and nanowires with different weight ratios and phase compositions are reported. X-ray diffraction and field emission scanning electron microscopy analyses revealed that the synthesized TiO 2 nanoparticles had average crystallite size in the range 21-39 nm, whereas TiO2 nanowires showed diameter in the range 20-50 nm. The indirect optical band gap energy of TiO2 nanowires, anatase- and rutile-TiO2 nanoparticles was calculated to be 3.35, 3.28 and 3.17 eV, respectively. The power conversion efficiency of the solar cells changed with nanowire to nanoparticle weight ratio, reaching a maximum at a... 

    Gel-sol synthesis and aging effect on highly crystalline anatase nanopowder

    , Article Bulletin of Materials Science ; Volume 34, Issue 6 , October , 2011 , Pages 1189-1195 ; 02504707 (ISSN) Shahini, S ; Askari, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    Highly crystalline TiO 2 anatase nanoparticles were synthesized via gel-sol method by using titanium isopropoxide and triethanolamine. The products were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric/differential thermal analysis and nitrogen gas absorption methods. The particle size ranged from 7 to 24 nm having specific surface area of 64 to 220 m 2/g. Selective Ti(OH) 4 gel specifications and hydrothermal test conditions resulted in thermodynamically- stable phase-formation. Aging at 130°C for 4 h resulted in particle size of 7 nm; while at 130 and 160°C for 12 h resulted in 12 and 21 nm, respectively  

    Synthesis and characterization of anatase-coated multiwall carbon nanotube for improvement of photocatalytic activity

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 30, Issue 4 , 2017 , Pages 543-550 ; 17281431 (ISSN) Kordhaghi, F ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2017
    Abstract
    Sol-gel technique was used to coat multiwall carbon nanotubes (MWCNTs) with anatase titania to increasing the surface area and improve the photocatalytic activity of TiO2. Room temperature ballistic conduct of MWCNT combined with semiconducting behavior of anatase brought about a photocatalytic improvement of ∼37 % with respect to the highest methyl orange decolorization flair. For characterization and photocatalytic efficiency determination, X-ray diffraction (XRD), field emission (FE) scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS) and ultraviolet visible (UV-vis) spectroscopy were rehearsed. Attachment of anatase...