Search for: anatomy-and-histology
0.005 seconds

    Disc size markedly influences concentration profiles of intravenously administered solutes in the intervertebral disc: A computational study on glucosamine as a model solute

    , Article European Spine Journal ; Vol. 23, issue. 4 , April , 2014 , p. 715-723 Motaghinasab, S ; Shirazi-Adl, A ; Parnianpour, M ; Urban, J. P. G ; Sharif University of Technology
    Purpose: Tests on animals of different species with large differences in intervertebral disc size are commonly used to investigate the therapeutic efficacy of intravenously injected solutes in the disc. We hypothesize that disc size markedly affects outcome. Methods: Here, using a small non-metabolized molecule, glucosamine (GL) as a model solute, we calculate the influence of disc size on transport of GL into rat, rabbit, dog and human discs for 10 h post intravenous-injection. We used transient finite element models and considered an identical GL supply for all animals. Results: Huge effects of disc size on GL concentration profiles were found. Post-injection GL concentration in the rat... 

    Developmental model of an automatic production of the human bronchial tree based on L-system

    , Article Computer Methods and Programs in Biomedicine ; Volume 132 , 2016 , Pages 1-10 ; 01692607 (ISSN) Davoodi, A ; Boozarjomehry, R. B ; Sharif University of Technology
    Elsevier Ireland Ltd  2016
    Background and objective: The human lungs exchange air with the external environment via the conducting airways. The application of an anatomically accurate model of the conducting airways can be helpful for simulating gas exchange and fluid distribution throughout the bronchial tree in the lung. Methods: In the current study, Lindenmayer system (L-system) has been formulated to generate the bronchial tree structure in a human lung. It has been considered that the structure of the bronchial tree is divided into two main segments: 1) The central airways (from the trachea to segmental bronchi) and 2) the dichotomous structure (from segmental bronchi to terminal bronchioles). Two sets of... 

    Intensity estimation of spontaneous facial action units based on their sparsity properties

    , Article IEEE Transactions on Cybernetics ; Volume 46, Issue 3 , 2016 , Pages 817-826 ; 21682267 (ISSN) Mohammadi, M. R ; Fatemizadeh, E ; Mahoor, M. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Automatic measurement of spontaneous facial action units (AUs) defined by the facial action coding system (FACS) is a challenging problem. The recent FACS user manual defines 33 AUs to describe different facial activities and expressions. In spontaneous facial expressions, a subset of AUs are often occurred or activated at a time. Given this fact that AUs occurred sparsely over time, we propose a novel method to detect the absence and presence of AUs and estimate their intensity levels via sparse representation (SR). We use the robust principal component analysis to decompose expression from facial identity and then estimate the intensity of multiple AUs jointly using a regression model...