Loading...
Search for:
anchorages--foundations
0.005 seconds
Shear behavior of ultra-high performance concrete
, Article Construction and Building Materials ; Volume 183 , 2018 , Pages 554-564 ; 09500618 (ISSN) ; Joghataie, A ; Mirmiran, A ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
The application of ultra-high performance concrete (UHPC) as an alternative to conventional/normal concrete (NC) has grown rapidly in recent years. However, there is limited knowledge on its shear behavior, which is essential for developing design guidelines for structural applications. A detailed parametric study was conducted on 38 beam specimens, half of which were made of UHPC and the other half made of NC. To ensure applicability of findings, two types of UHPC mixes were used, a proprietary and a generic mix. Eighteen of the beams were prepared and tested in Tabriz, Iran, while the other 20 were made and tested in Miami, FL. Test parameters included type of concrete (UHPC and NC), shear...
A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip
, Article Biomicrofluidics ; Volume 12, Issue 2 , April , 2018 ; 19321058 (ISSN) ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
American Institute of Physics Inc
2018
Abstract
Thin porous membranes are important components in a microfluidic device, serving as separators, filters, and scaffolds for cell culture. However, the fabrication and the integration of these membranes possess many challenges, which restrict their widespread applications. This paper reports a facile technique to fabricate robust membrane-embedded microfluidic devices. We integrated an electrospun membrane into a polydimethylsiloxane (PDMS) device using the simple plasma-activated bonding technique. To increase the flexibility of the membrane and to address the leakage problem, the electrospun membrane was fabricated with the highest weight ratio of PDMS to polymethylmethacrylate (i.e., 6:1...
Enhancement of bond characteristics of ribbed-surface GFRP bars with concrete by using carbon fiber mat anchorage
, Article Construction and Building Materials ; Volume 134 , 2017 , Pages 507-519 ; 09500618 (ISSN) ; Bazli, M ; Vatani Oskouei, A. V ; Sharif University of Technology
Abstract
The bond of fiber-reinforced polymer (FRP) reinforcement is expected to be more sensitive to the strength and geometry of the ribs than conventional steel reinforcement. In this study, the effect of carbon fiber mat anchorage on the pullout behavior of glass fiber-reinforced polymer (GFRP) bars embedded in normal concrete is studied. The studied parameters were the compressive strength of the concrete (16 MPa, 24 MPa, and 37 MPa), and, the length and diameter of the anchorage. In total, 15 variables were studied. Ribbed GFRP bars with 10 mm nominal diameter and 80 mm embedment length, ld, (which is 8 times the bar diameter) were considered. Based on the results for concretes with the...