Loading...
Search for: antibacterial-nanocomposites
0.01 seconds

    Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation [electronic resource]

    , Article Journal of Applied Surface Science ; 15 May 2014, Volume 301, Pages 456–462 Mazaheri, M ; Akhavan, O ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured... 

    Effects of SiC nanoparticles on synthesis and antimicrobial activity of TiCu nanocrystalline powder

    , Article Ceramics International ; Volume 46, Issue 1 , January , 2020 , Pages 114-120 Moniri Javadhesari, S ; Alipour, S ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Effects of SiC nanoparticles addition on synthesis and antibacterial properties of TiCu nanocrystalline powder prepared through high energy mechanical milling were studied. The results showed that the synthesis of TiCu powder in the presence of the nanoparticles was accelerated and after mechanical alloying for 20 h, a TiCu/SiC nanocrystalline powder with the crystallite size <5 nm, and 3.3% lattice micro-strain obtained. Further milling resulted in fully amorphous TiCu intermetallic alloy with more uniform distribution of SiC nanoparticles. The antibacterial activity of the synthesized powders was investigated by disk diffusion test. The TiCu/SiC nanocomposites showed enhanced antibacterial...