Loading...
Search for: antimony-compounds
0.005 seconds

    Novel multifunctional capacitor-varistor ceramics based on SnO2

    , Article Ceramics International ; Volume 44, Issue 16 , 2018 , Pages 20386-20390 ; 02728842 (ISSN) Maleki Shahraki, M ; Alipour, S ; Mahmoudi, P ; Karimi, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Up to now, multifunctional varistor-capacitor materials were based on TiO2, even though these materials failed to have practical applications. For the first time, in this research, multifunctional varistor-capacitor properties are observed in the CuO-doped SnO2-CoO-Sb2O3 system. The XRD analysis showed that this system has a single phase microstructure. SEM images indicated that the CuO addition resulted in a better densification and larger grain size. The very low electric breakdown field of the CuO-doped SnO2-CoO-Sb2O3 system (12 V/mm, similar to TiO2), is a consequence of coarse-grained microstructure. This varistor had a suitable surge withstand capability as well. The colossal... 

    Potential application of CuSbS2 as the hole transport material in perovskite solar cell: a simulation study

    , Article Superlattices and Microstructures ; Volume 118 , 2018 , Pages 116-122 ; 07496036 (ISSN) Teimouri, R ; Mohammadpour, R ; Sharif University of Technology
    Academic Press  2018
    Abstract
    CH3 NH3 PbI3 (MAPbI3) thin film solar cells, which are reported at laboratory efficiency scale of nearly 22%, are the subject of much attention by energy researchers due to their low cost buildup, acceptable efficiency, high absorption coefficient and diffusion length. The main purpose of this research is to simulate the structure of thin film perovskite solar cells through numerical simulation of SCAPS based on the empirical data for different hole transport layers. After simulating the initial structure of FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD solar cell, the hole transport layer Spiro-OMeTAD thickness was optimized on a small scale using modeling. The researchers also sought to reduce the... 

    Solution synthesis of CuSbS2 nanocrystals: a new approach to control shape and size

    , Article Journal of Alloys and Compounds ; Volume 736 , 2018 , Pages 190-201 ; 09258388 (ISSN) Moosakhani, S ; Sabbagh Alvani, A. A ; Mohammadpour, R ; Ge, Y ; Hannula, S. P ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Chalcostibite copper antimony sulfide (CuSbS2) micro- and nanoparticles with a different shape and size have been prepared by a new approach to hot injection route. In this method, sulfur in oleylamine (OLA) is employed as a sulfonating agent providing a simple route to control the shape and size of the particles, which enables the optimization of CuSbS2 for a variety of applications. The sulfur to metallic precursor ratio appears to be one of the most effective parameters along with the temperature and time for controlling the size and morphology of the particles. The growth mechanism study shows in addition to the CuSbS2 phase the presence of not previously observed intermediate phases... 

    Adsorption behavior of Sb(III) in single and binary Sb(III)—Fe(II) systems on cationic ion exchange resin: adsorption equilibrium, kinetic and thermodynamic aspects

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 30, Issue 1 , January , 2020 , Pages 236-248 Moghimi, F ; Jafari, A. H ; Yoozbashizadeh, H ; Askari, M ; Sharif University of Technology
    Nonferrous Metals Society of China  2020
    Abstract
    The present study dealt with the mechanism of competitive adsorption of Sb(III) and Fe(II) ions from a copper-containing aqueous solution on Purolite S957, a commercially available cationic ion-exchange adsorbent. Experiments were conducted using aqueous copper sulfate solutions containing either single or conjoint ions, using both sedentary and batch adsorption techniques to ascertain the sensitivity of the adsorption process to variation in pH, mass of resin, contact time, and temperature as well as establishing the optimal range of variables for maximum ion removal. The data from single ion adsorption tests were fitted by non-linear regression techniques to Henry, Langmuir, Freundlich,... 

    Novel nanocomposite polyethersulfone- antimony tin oxide membrane with enhanced thermal, electrical and antifouling properties

    , Article Polymer ; Volume 163 , 2019 , Pages 48-56 ; 00323861 (ISSN) Khorshidi, B ; Hosseini, S. A ; Ma, G ; McGregor, M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Application of organic−inorganic nanocomposite membranes for water treatment is exceptionally growing owing to their tunable functionalities in addition to their enhanced permeation and antifouling propensity. In the present work, novel nanocomposite polyethersulfone (PES) membrane was synthesized using antimony-doped tin oxide (ATO) nanoparticles (NPs) via phase separation technique. It was found that the modified PES-ATO nanocomposite membranes exhibited significantly higher fouling resistance and larger permeate flux recovery ratio when tested with oil sands produced water than unmodified PES membranes. Furthermore, the PES-ATO membranes provided 40% more organic matter removal compared... 

    Sb2S3 and Cu3SbS4 nanocrystals as inorganic hole transporting materials in perovskite solar cells

    , Article Solar Energy ; Volume 223 , 2021 , Pages 106-112 ; 0038092X (ISSN) Mohamadkhani, F ; Heidariramsheh, M ; Javadpour, S ; Ghavaminia, E ; Mahdavi, S. M ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    One of the key parts of perovskite solar cells which has great influence on their performance and stability is hole transporting layer. Spiro-OMeTAD is extensively used as organic hole transporting material in perovskite solar cells. However, Spiro-OMeTAD is expensive and has low chemical stability. In this study, the solution processed Sb2S3 and Cu3SbS4 nanocrystals have been synthesized and then the n-i-p mesoscopic perovskite solar cells have been fabricated using Spiro-OMeTAD, Sb2S3 and Cu3SbS4 nanocrystals as hole transporting layer at ambient air condition. It is shown that the conduction and valence band levels of the synthesized Sb2S3 and Cu3SbS4 nanocrystals are in the proper...