Loading...
Search for: appropriate-fitness-function
0.005 seconds

    Maximum torque per ampere control of permanent magnet synchronous motor using genetic algorithm

    , Article Telkomnika ; Volume 9, Issue 2 , 2011 , Pages 237-244 ; 16936930 (ISSN) Tahami, F ; Nademi, H ; Rezaei, M ; Sharif University of Technology
    Abstract
    Permanent magnet synchronous motor (PMSM) drives have many advantages over other drives, i.e. high efficiency and high power density. Particularly, PMSMs are epoch-making and are intensively studied among researchers, scientists and engineers. This paper deals with a novel high performance controller based on genetic algorithm. The scheme allows the motor to be driven with maximum torque per ampere characteristic. In this paper assuming an appropriate fitness function, the optimum values for d-axis current of motor set points at each time are found and then applied to the controller. Simulation results show the successful operation of the proposed controller  

    A high-performance vector-controlled PMSM drive with maximum torque per ampere operation

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; January , 2008 , Pages 254-258 ; 9781424424054 (ISBN) Tahami, F ; Nademi, H ; Rezaei, M ; Sharif University of Technology
    2008
    Abstract
    Permanent magnet synchronous motor (PMSM) drives have many advantages over other drives, e.g. high efficiency and high power density. Particularly, permanent magnet synchronous motors are epoch-making and are intensively studied among researchers, scientists and engineers. This paper deals with a novel high performance controller based on genetic algorithm. The scheme allows the motor to be driven with maximum torque per ampere characteristic. In this paper assuming an appropriate fitness function, the optimum values for d-axis current of motor set points at each time are found and then applied to the controller. Simulation results show the successful operation of the proposed controller. ©...