Loading...
Search for: aqueous-samples
0.01 seconds

    Determination of 2,4-D in environmental samples by three phases directly suspended LPME combined with HPLC-UV

    , Article Analytical Methods ; Volume 3, Issue 10 , 2011 , Pages 2261-2267 ; 17599660 (ISSN) Amani, V ; Roshan, S ; Asgharinezhad, A. A ; Najafi, E ; Abedi, H ; Tavassoli, N ; Lotfi Zadeh Zhad, H. R ; Sharif University of Technology
    Abstract
    Experimental design of directly suspended droplet liquid-liquid-liquid microextraction has been used to determine residue of 2,4-D, in environmental water samples. A free suspended droplet of 5.5 μL of receiving phase is delivered to the top-center position of 1-Octanol, which is an immiscible organic solvent, floating on the top of a 2.5 mL aqueous sample while being agitated by a stirring bar to create a mild vortex at the center of the vial. Central composite rotatable design has been used for studying the effect of the parameters, the factors interacting with each other and finding the optimum condition. The chromatographic separation was accomplished on a shim-Pak C18 column using a... 

    Novel nanofiber coatings prepared by electrospinning technique for headspace solid-phase microextraction of chlorobenzenes from environmental samples

    , Article Analytical Methods ; Volume 3, Issue 6 , Apr , 2011 , Pages 1284-1289 ; 17599660 (ISSN) Bagheri, H ; Aghakhani, A ; Sharif University of Technology
    2011
    Abstract
    Novel unbreakable solid phase microextraction (SPME) fiber coatings were fabricated by electrospinning method in which the polymeric solution was converted to nanofibers using high voltages. Four different polymers, polyurethane (PU), polycarbonate (PC), polyamide (PA) and polyvinyl chloride (PVC) were prepared as the fiber coatings on thin stainless steel wires. The extraction efficiencies of new coatings were investigated by headspace solid-phase microextraction (HS-SPME) of some environmentally important chlorobenzenes from aqueous samples followed by gas chromatography-mass spectrometry (GC-MS) analysis. Among them, PU showed a prominent efficiency. Effects of coating time and polymer... 

    Membrane protected conductive polymer as micro-SPE device for the determination of triazine herbicides in aquatic media

    , Article Journal of Separation Science ; Volume 33, Issue 8 , 2010 , Pages 1132-1138 ; 16159306 (ISSN) Bagheri, H ; Khalilian, F ; Naderi, M ; Babanezhad, E ; Sharif University of Technology
    Abstract
    A micro-SPE technique was developed by fabricating a rather small package including a polypropylene membrane shield containing the appropriate sorbent. The package was used for the extraction of some triazine herbicides from aqueous samples. Solvent desorption was subsequently performed in a microvial and an aliquot of extractant was injected into GC-MS. Various sorbents including aniline-ortho-phenylene diamine copolymer, newly synthesized, polypyrrole, multiwall carbon nanotube, C18 and charcoal were examined as extracting media. Among them, conductive polymers exhibited better performance. Influential parameters including extraction and desorption time, desorption solvent and the ionic... 

    Aniline-silica nanocomposite as a novel solid phase microextraction fiber coating

    , Article Journal of Chromatography A ; Volume 1238 , May , 2012 , Pages 22-29 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    2012
    Abstract
    A new unbreakable solid phase microextraction (SPME) fiber coating based on aniline-silica nanocomposite was electrodeposited on a stainless steel wire. The electropolymerization process was carried out at a constant deposition potential, applied to the corresponding aqueous electrolyte containing aniline and silica nanoparticles. The scanning electron microscopy (SEM) images showed the non-smooth and the porous surface structure of the prepared nanocomposite. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some environmentally important polycyclic aromatic hydrocarbons (PAHs), as model compounds, from aqueous samples.... 

    Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples

    , Article Analytica Chimica Acta ; Volume 716 , 2012 , Pages 34-39 ; 00032670 (ISSN) Bagheri, H ; Aghakhani, A ; Baghernejad, M ; Akbarinejad, A ; Sharif University of Technology
    2012
    Abstract
    A novel solid phase microextraction (SPME) fiber was fabricated by electrospinning method in which a polymeric solution was converted to nanofibers using high voltages. A thin stainless steel wire was coated by the network of polymeric nanofibers. The polymeric nanofiber coating on the wire was mechanically stable due to the fine and continuous nanofibers formation around the wire with a three dimensional structure. Polyamide (nylon 6), due to its suitable characteristics was used to prepare the unbreakable SPME nanofiber. The scanning electron microscopy (SEM) images of this new coating showed a diameter range of 100-200nm for polyamide nanofibers with a homogeneous and porous surface... 

    Novel unbreakable solid-phase microextraction fiber by electrodeposition of silica sol-gel on gold

    , Article Journal of Separation Science ; Volume 34, Issue 22 , 2011 , Pages 3246-3252 ; 16159306 (ISSN) Bagheri, H ; Sistani, H ; Ayazi, Z ; Sharif University of Technology
    Abstract
    A new technique for preparation of an unbreakable solid-phase microextraction (SPME) fiber, using sol-gel technology is developed. Primarily, an ultrathin two-dimensional intermediate film was prepared by hydrolysis of 3-(trimethoxysilyl)-1-propanthiol self-assembled monolayer grafted onto gold, then a stationary phase by electrodeposition of 3-(trimethoxysilyl) propylmethacrylate as a precursor, tetramethyl orthosilicate and polyethylene glycol as a coating polymer was produced. The scanning electron microscopy images revealed that the new fiber exhibits a rather porous and homogenous surface. The thermal stability of the fabricated fiber was investigated by thermogravimetric analysis. The... 

    A novel needle trap sorbent based on carbon nanotube-sol-gel for microextraction of polycyclic aromatic hydrocarbons from aquatic media

    , Article Analytica Chimica Acta ; Volume 683, Issue 2 , January , 2011 , Pages 212-220 ; 00032670 (ISSN) Bagheri, H ; Ayazi, Z ; Aghakhani, A ; Sharif University of Technology
    2011
    Abstract
    A new type of composite material based on carbon nanotubes (CNTs) and sol-gel chemistry was prepared and used as sorbent for needle trap device (NTD). The synthesized composite was prepared in a way to disperse CNTs molecules in a sol-gel polymeric network. CNT/silica composites with different CNT doping levels were successfully prepared, and the extraction capability of each composite was evaluated. Effects of surfactant and the oxidation duration of CNTs on the extraction efficiency of synthesized composites were also investigated. The applicability of the synthesized sorbent was examined by developing a method based on needle trap extraction (NTE) and gas chromatography mass spectrometry...