Loading...
Search for: arrival-time-difference
0.005 seconds

    Passive Source Localization Using Time Difference of Arriaval and Frequency Difference of Arrival Measurements

    , M.Sc. Thesis Sharif University of Technology Adelipour, Sajjad (Author) ; Behnia, Fereidoon (Supervisor)
    Abstract
    Passive source localization accounts for the identification of the position and velocity of an object that emits electromagnetic/sound waves. This concept suggests various civil and military applications such as localization of the cellular phone users for emergency services, navigation, localizing radar and sonar sources. Received Signal Strength (RSS), Time of Arrival (TOA), Time Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA) of the emitted signals are commonly used for position finding. Among all these measurement methods, localization using TDOA and FDOA is highly accurate and needless of any time synchronization between the source and the sensors. Common methods... 

    Joint time difference of arrival/angle of arrival position finding in passive radar

    , Article IET Radar, Sonar and Navigation ; Volume 3, Issue 2 , 2009 , Pages 167-176 ; 17518784 (ISSN) Norouzi, Y ; Derakhshani, M ; Sharif University of Technology
    2009
    Abstract
    Several target position finding methods are proposed in various papers mainly regarding sensor networks. However, the problem of position finding in passive radar systems is somewhat different from the general case of sensor networks. Generally, in a passive radar system, there are few receivers located at short distances when compared with the it distance from the target. In this case, a problem known as geometric dilution of precision (GDP) occurs, which considerably increases the error of many proposed methods. This phenomenon can even make the position finding equations non-solvable. Regarding this fact, we have developed a least mean square error (LMSE) based method, which uses both the... 

    Optimal geometry analysis for tdoa-based localization under communication constraints

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 57, Issue 5 , 2021 , Pages 3096-3106 ; 00189251 (ISSN) Sadeghi, M ; Behnia, F ; Amiri, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    The sensor-source geometry has a significant effect on accuracy of source localization problems. In a sensor placement problem, one attempts to optimally place the sensors in the surveillance area so as to optimize a performance criterion. Sensor placement methods mainly solve the associated problems without taking any specific constraint on permissible location of sensors into account. In practical applications, however, possible location for deployment of the sensors are subject to such limitations as environmental, industrial, and communication constraints, which affects the optimal sensor-source geometry. In this article, we consider the problem of optimal sensor placement, based on time...