Search for: artery-blood-flow
0.005 seconds

    Analytical and numerical evaluation of steady flow of blood through artery

    , Article Biomedical Research (India) ; Volume 24, Issue 1 , 2013 , Pages 88-98 ; 0970938X (ISSN) Sedaghatizadeh, N ; Barari, A ; Soleimani, S ; Mofidi, M ; Sharif University of Technology
    Steady blood flow through a circular artery with rigid walls is studied by COSSERAT Continuum Mechanical Approach. To obtain the additional viscosities coefficients, feed forward multi-layer perceptron (MLP) type of artificial neural networks (ANN) and the results obtained in previous empirical works is used. The governing filed equations are derived and solution to the Hagen-Poiseuilli flow of a COSSERAT fluid in the artery is obtained analytically by Homotopy Perturbation Method (HPM) and numerically using finite difference method. Comparison of analytical results with numerical ones showed excellent agreement. In addition microrotation and the velocity profile along the radius are... 

    Artificial neural network for predicting the safe temporary artery occlusion time in intracranial aneurysmal surgery

    , Article Journal of Clinical Medicine ; Volume 10, Issue 7 , 2021 ; 20770383 (ISSN) Shahjouei, S ; Ghodsi, S. M ; Zangeneh Soroush, M ; Ansari, S ; Kamali Ardakani, S ; Sharif University of Technology
    MDPI  2021
    Background. Temporary artery clipping facilitates safe cerebral aneurysm management, besides a risk for cerebral ischemia. We developed an artificial neural network (ANN) to predict the safe clipping time of temporary artery occlusion (TAO) during intracranial aneurysm surgery. Method. We devised a three-layer model to predict the safe clipping time for TAO. We considered age, the diameter of the right and left middle cerebral arteries (MCAs), the diameter of the right and left A1 segment of anterior cerebral arteries (ACAs), the diameter of the anterior communicating artery, mean velocity of flow at the right and left MCAs, and the mean velocity of flow at the right and left ACAs, as well... 

    Margination and adhesion of micro- and nanoparticles in the coronary circulation: A step towards optimised drug carrier design

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 17, Issue 1 , 2018 , Pages 205-221 ; 16177959 (ISSN) Forouzandehmehr, M ; Shamloo, A ; Sharif University of Technology
    Springer Verlag  2018
    Obstruction of left anterior descending artery (LAD) due to the thrombosis or atherosclerotic plaques is the leading cause of death worldwide. Targeted delivery of drugs through micro- and nanoparticles is a very promising approach for developing new strategies in clot-busting or treating restenosis. In this work, we modelled the blood flow characteristics in a patient-specific reconstructed LAD artery by the fluid–solid interaction method and based on physiological boundary conditions. Next, we provided a Lagrangian description of micro- and nanoparticles dynamics in the blood flow considering their Brownian motion and the particle–particle interactions. Our results state that the number of...