Loading...
Search for: asp-flooding
0.006 seconds

    Simultaneous/sequential alkaline-surfactant-polymer flooding in fractured/non-fractured carbonate reservoirs

    , Article Canadian Journal of Chemical Engineering ; Vol. 92, issue. 5 , May , 2014 , p. 918-927 ; ISSN: 00084034 Sedaghat, M. H ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    Alkaline-Surfactant-Polymer flooding is one of the most novel chemical enhanced oil recovery methods in the petroleum industry. This method has attracted interest due to its remarkable advantages. In this work, a series of ASP floods are conducted on fractured/non-fractured carbonate rocks. The performance of the tests was investigated by various ASP floods consisting of five types of polymers, two surfactants and one common alkaline. ASP was flooded simultaneously and sequentially in four defined scenarios after water flooding. The results showed that although using hydrolysed polymers increases the recovery factor in the fractured medium, sulfonated polymers increase oil recovery even more... 

    Experimental and Theoretical Investigation of Heavy Oil Recovery Using Chemical Flooding; Mechanistically Study

    , Ph.D. Dissertation Sharif University of Technology Dehghan, Ali Akbar (Author) ; Masihi, Mohsan (Supervisor) ; Ayatollahi, Shahaboddin (Supervisor)
    Abstract
    Chemical flooding has great potential to recover significant fractions of remaining oil for medium to heavy oil reservoirs not applicable for thermal recovery techniques. Nowadays, with gradual crude oil price increase the chemical process is receiving renewed attention, however, illustration of the possibility of various chemical injection scenarios for medium to heavy oil reservoirs has not been clearly reported and these kinds of reservoirs require more investigation for the applicability of these techniques in the fields. The interfacial active molecules are responsible for providing low IFT range and water/oil emulsions which in many cases could improve the oil displacement efficiency.... 

    Experimental Study of ASP Flooding in Shaly Heavy Oil Reservoirs Using Five-Spot Micromodels

    , M.Sc. Thesis Sharif University of Technology Mehranfar, Amin (Author) ; Rashtchian, Davood (Supervisor) ; Masihi, Mohsen (Supervisor) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    Heavy oil reservoirs include a major part of the world’s oil reservoirs. Therefore consideration to their enhanced oil recovery (EOR) aspects has a great importance. In heavy oil reservoirs secondary and tertiary EOR methods, have an insignificant effect on oil recovery and so we’d better to use chemical methods to improve mobility and oil recovery. One of the appropriate EOR methods which has attracted a lot of attention is alkaline – surfactant – polymer (ASP) flooding which has a considerable impact on EOR from heavy oil reservoirs. In this EOR method, the low concentration of surfactant in the injecting fluid, results in a low or ultra-low interfacial tension (IFT) between residual oil... 

    Experimental Investigation of ASP Flooding for EOR in Fractured Heavy Oil Reservoirs Using Micromodel Apparatus

    , M.Sc. Thesis Sharif University of Technology Sedaghat, Mohammad Hossein (Author) ; Massihi, Mohsen (Supervisor) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Rashtchian, Davood (Supervisor)
    Abstract
    Heavy oil reservoirs contain huge amount of initial oil in place in the world. Thus, enhancement of their production attracts lots of attention. Primary and secondary oil recovery methods have just little effects on the production of these reservoirs, thus, using innovative chemical methods which lead them to increase their mobility is recommended to improve their oil recovery efficiency. One of these proper and novel methods which has been established recently to enhance oil recovery is ASP1 flooding that can significantly increase oil recovery from petroleum heavy oil reservoirs. In addition, considerable numbers of reservoirs especially heavy oil reservoirs are fractured reservoirs. In... 

    Macroscopic and microscopic investigation of alkaline-surfactant-polymer flooding in heavy oil recovery using five-spot micromodels: The effect of shale geometry and connatewater saturation

    , Article Journal of Porous Media ; Volume 18, Issue 8 , 2015 , Pages 745-762 ; 1091028X (ISSN) Mehranfar, A ; Ghazanfari, M. H ; Masihi, M ; Rashtchian, D ; Sharif University of Technology
    Begell House Inc  2015
    Abstract
    Plenty of oil reservoirs contain discontinuous shale layers that act as flow barriers. Therefore, understanding their influences on reservoir performance, especially during enhanced oil recovery (EOR) processes, is of great importance. For this purpose, several experiments of water and alkaline-surfactant-polymer (ASP) flooding have been performed on a number of one-quarter five-spot micromodels that contain various configurations of shale layers to simulate shaly porous media. Several features, such as various shale geometrical characteristics and the presence of connate water saturation, were investigated at both macro- and micro-scales. The presence of shales resulted in earlier... 

    Pore-level experimental investigation of ASP flooding to recover heavy oil in fractured five-spot micromodels

    , Article EUROPEC 2015, 1 June 2015 through 4 June 2015 ; June , 2015 , Pages 1033-1058 ; 9781510811621 (ISBN) Sedaghat, M ; Mohammadzadeh, O ; Kord, S ; Chatzis, I ; Sharif University of Technology
    Society of Petroleum Engineers  2015
    Abstract
    Although Alkaline-Surfactant-Polymer (ASP) flooding is proved to be efficient for heavy oil recovery, the displacement mechanisms/efficiency of this process should be discussed further in fractured porous media especially in typical waterflood geometrical configurations such as five-spot injection-production pattern. In this study, several ASP flooding tests were conducted in fractured glass-etched micromodels which were initially saturated with heavy oil. The ASP flooding tests were conducted at constant injection flow rates and different fracture geometrical characteristics were used. The ASP solutions constituted of five polymers, two surfactants and three alkaline types. The results... 

    Heavy oil recovery using ASP flooding: A pore-level experimental study in fractured five-spot micromodels

    , Article Canadian Journal of Chemical Engineering ; Volume 94, Issue 4 , 2016 , Pages 779-791 ; 00084034 (ISSN) Sedaghat, M ; Mohammadzadeh, O ; Kord, S ; Chatzis, I ; Sharif University of Technology
    Wiley-Liss Inc  2016
    Abstract
    Although alkaline-surfactant-polymer (ASP) flooding has proven efficient for heavy oil recovery, the displacement mechanisms and efficiency of this process should be discussed further in fractured porous media. In this study, several ASP flooding tests were conducted in fractured glass-etched micromodels with a typical waterflood geometrical configuration, i.e. five-spot injection-production pattern. The ASP flooding tests were conducted at constant injection flow rates but different fracture geometrical characteristics. The ASP solutions consisted of five polymers, two surfactants, and three alkaline types. It was found that using synthetic polymers, especially hydrolyzed polyacrylamide...