Search for: assays
0.007 seconds
Total 121 records

    Erratum: Shock polar investigation in supersonic rarefied gas flows over a circular cylinder (Physics of Fluids (2021) 33 (052006) DOI: 10.1063/5.0050571)

    , Article Physics of Fluids ; Volume 33, Issue 6 , 2021 ; 10706631 (ISSN) Akhlaghi, H ; Roohi, E ; Daliri, A ; Soltani, M. R ; Sharif University of Technology
    American Institute of Physics Inc  2021
    This article was originally published online on 25May 2021 with the third author listed at the wrong affiliation. The affiliations appear correct above. All online versions of the article were corrected on 28 May 2021; the article is correct as it appears in the printed version of the journal. © 2021 American Institute of Physics Inc.. All rights reserved  

    Mortality response of folate receptor-activated, PEG-functionalized TiO2 nanoparticles for doxorubicin loading with and without ultraviolet irradiation

    , Article Ceramics International ; Vol. 40, issue. 4 , May , 2014 , pp. 5481-5488 ; ISSN: 02728842 Naghibi, S ; Madaah Hosseini, H. R ; Faghihi Sani, M. A ; Shokrgozar, M. A ; Mehrjoo, M ; Sharif University of Technology
    TiO2 nanoparticles (NPs) were synthesized by hydrothermal assisted sol-gel technique. In the next step, as-synthesized NPs were modified by poly ethylene glycol (PEG). Then, folic acid (FA) was conjugated to TiO 2-PEG. Finally, Doxorubicin (Dox) as an anticancer drug was loaded on as-prepared TiO2-PEG-FA nanocarrier. The optimization of TiO 2 and FA concentration and the influence of ultraviolet (UV) irradiation on photocatalytic activity of nanocarrier and Dox loaded carrier were assessed by utilizing the 3-(4,5-dimethylthiazol-2yl)-2,5- diphenyltetrazolium bromide (MTT)-assay method. Results indicated that the effect of NPs on cancer cells killing is dose-dependent, optimized at 1.25 g/L.... 

    In vitro study of bare and poly (ethylene glycol)-co-fumarate coated superparamagnetic iron oxide nanoparticles for reducing potential risks to humans and the environment

    , Article Handbook of Sustainable Energy ; May , 2011 , Pages 649-666 ; 9781608762637 (ISBN) Mahmoudi, M ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Shivaee, H. A ; Sharif University of Technology
    Nova Science Publishers, Inc  2011
    For risk free application of nanoparticles in life science, energy and the environment, it is essential to understand their biological fate and potential toxicity. The application of iron oxide nanoparticles for drug delivery has been one of the most promising researches in the field of nanotechnology. However, there are two major problems associated with magnetically targeted deliveries that still need close attention: • As the drug is coated on to the particle surfaces, there is the possibility of faster drug release (Burst Effect). Therefore, after reaching to the specific site, there is very low amount of drug for delivery. To overcome this problem, some researchers have used conjugation... 

    Laccase activity assay using surface plasmon resonance band of gold nanoparticles formed by dopamine

    , Article Plasmonics ; 2017 , Pages 1-7 ; 15571955 (ISSN) Pashangeh, Kh ; Hormozi Nezhad, M. R ; Akhond, M ; Absalan, G ; Sharif University of Technology
    A simple, fast, and sensitive colorimetric technique for determination of laccase activity using dopamine (DA) induced growth of colloidal gold nanoparticles is proposed. It was found that the reduction of AuCl4 − to colloidal gold nanoparticles (AuNPs) by dopamine (DA) in the presence of citrate ion as stabilizing agent produced a very intense surface plasmon resonance peak of AuNPs at 530 nm. As the activity of laccase (at fixed concentration of DA) increases, the oxidation of DA to dopamine-o-quinone (DOQ) is enhanced. The latter product could not act as the reducing agent for the reduction of AuCl4 − to AuNPs. So, as the activity of laccase increases, the absorbance characteristic to the... 

    Laccase activity assay using surface plasmon resonance band of gold nanoparticles formed by dopamine

    , Article Plasmonics ; Volume 13, Issue 4 , 2018 , Pages 1409-1415 ; 15571955 (ISSN) Pashangeh, K ; Hormozi Nezhad, M. R ; Akhond, M ; Absalan, G ; Sharif University of Technology
    Springer New York LLC  2018
    A simple, fast, and sensitive colorimetric technique for determination of laccase activity using dopamine (DA) induced growth of colloidal gold nanoparticles is proposed. It was found that the reduction of AuCl4 − to colloidal gold nanoparticles (AuNPs) by dopamine (DA) in the presence of citrate ion as stabilizing agent produced a very intense surface plasmon resonance peak of AuNPs at 530 nm. As the activity of laccase (at fixed concentration of DA) increases, the oxidation of DA to dopamine-o-quinone (DOQ) is enhanced. The latter product could not act as the reducing agent for the reduction of AuCl4 − to AuNPs. So, as the activity of laccase increases, the absorbance characteristic to the... 

    Cell life cycle effects of bare and coated superparamagnetic iron oxide nanoparticles

    , Article Toxic Effects of Nanomaterials ; 2012 , Pages 53-66 ; 9781608054213 (ISBN) Mahmoudi, M ; Laurent, S ; Journeay, W. S ; Sharif University of Technology
    Due to the hopeful potential of nanoparticles in medicine, they have attracted much attention for various applications such as targeted drug/gene delivery, separation or imaging. Interaction of NPs with the biological environment can lead to a wide range of cellular responses. In order to have safe NPs for biomedical applications, the current biocompatibility researches are particularly focused on the severe toxic mechanisms which cause cells death. These mechanisms are apoptosis, autophagy and necrosis, which can also be intricately linked with the cell-life cycle, as there are various check-points and controls in a cell's life cycle to ensure appropriate division processes. Mechanisms by... 

    Experimental Investigation on Growth and Control of Animal Cells Attached on Scaffold

    , M.Sc. Thesis Sharif University of Technology Solmaz, Naseri (Author) ; Vossoughi, Manoochehr (Supervisor) ; Alamzadeh, Iran (Co-Advisor)
    Major bone defects resulted from diseases or hurts that can not heal naturally, requaire bone transplantation. golden standard for transplantation is autologus one but it has some disad-vantages such as economic burden, the lack of graft source, surgery on patient, and so on. so exploring altrnative ways led to exploit stem cells.traditionally bone marrow mesenchymal stem cells (MSCs) used for stem cell-bsaed bone regeneration. bone marrow aspiration to aquaire stem cells is painfull and give a population of cells such as hematopoetic cells that requaire to seperate and can not be handled in first passages. MSCs can be substituted by multipotent adipose tissue-derived stem cells (ADSCs) in... 

    The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

    , Article Iranian Journal of Pharmaceutical Research ; Volume 18, Issue 1 , 2019 , Pages 111-124 ; 17350328 (ISSN) Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Sharif University of Technology
    Iranian Journal of Pharmaceutical Research  2019
    In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astrocyte proliferation and microglial activation. Bovine serum albumin (BSA) was used to improve the encapsulation efficiency of DEXP within chitosan nanoparticles and to overcome its initial burst release. BSA incorporation within the chitosan nanoparticles increased the encapsulation efficiency of DEXP... 

    Organ-tumor-on-a-chip for chemosensitivity assay: A critical review

    , Article Micromachines ; Volume 7, Issue 8 , 2016 ; 2072666X (ISSN) Kashaninejad, N ; Nikmaneshi, M. R ; Moghadas, H ; Kiyoumarsi Oskouei, A ; Rismanian, M ; Barisam, M ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    MDPI AG  2016
    With a mortality rate over 580,000 per year, cancer is still one of the leading causes of death worldwide. However, the emerging field of microfluidics can potentially shed light on this puzzling disease. Unique characteristics of microfluidic chips (also known as micro-total analysis system) make them excellent candidates for biological applications. The ex vivo approach of tumor-on-a-chip is becoming an indispensable part of personalized medicine and can replace in vivo animal testing as well as conventional in vitro methods. In tumor-on-a-chip, the complex three-dimensional (3D) nature of malignant tumor is co-cultured on a microfluidic chip and high throughput screening tools to evaluate... 

    Synthesis and Biological Evaluation of Superparamagnetic Iron Oxide Nanoparticles as Contrast Agents for Bioimaging Applications

    , M.Sc. Thesis Sharif University of Technology Ali Abouzar, Mitra (Author) ; Maddah Hosseini, Hamid (Supervisor) ; Oghabian, Mohammad Ali (Supervisor)
    A biocompatible ferrofluid containing ?Fe?_3 O_4 nanoparticles was produced using co precipitation of ?FeCl?_2.?4H?_(2 )O and ?FeCl?_3 ?6H?_2 O under ultrasonic irradiation power with NaOH being the alkaline. Two variables studied in this research were concentration and molecular weight of PEG, as the coating agent. The impact of these variables were carefully monitored on shape, size distribution and magnetic behavior of nanoparticles through SEM, DLS, XRD and VSM characterization techniques. Moreover, MRI relaxation times,T_1and T_2, were calculated using synthesized nanoparticles as contrast agents. Accordingly these nanoparticles were biologically evaluated by MTT assay. Results... 

    Electrophoretic Deposition of Alginate-Bioglass-Nanodiamond Nanocomposites and Evolution of their Bioactivity

    , M.Sc. Thesis Sharif University of Technology Mansoorianfar, Mojtaba (Author) ; Simchi, Abdollreza (Supervisor)
    Recently, diamond nanoparticles have attracted interest for biomedical applications such as drug delivery, targeted cancer therapies, fabrication of tissue scaffolds and biosensors. In the present work, elecrophoretic deposition (EPD) of nanodiamond-bioactive glass-alginate nanocomposite was studied. In vitro bioactivity and biocompatibility of the nanocomposite were evaluated in simulated body fluid (SBF) and by MTT assay. The EPD process was performed under different conditions in order to obtain a uniform coating on the surface of 316L stainless steel substrate. The stability of the suspension was determined via optical sedimentation method and zeta potential analysis. It was found that... 

    Optical nanoprobes for chiral discrimination

    , Article Analyst ; Volume 145, Issue 20 , 2020 , Pages 6416-6434 Bigdeli, A ; Ghasemi, F ; Fahimi Kashani, N ; Abbasi Moayed, S ; Orouji, A ; Jafar Nezhad Ivrigh, Z ; Shahdost Fard, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Chiral discrimination has always been a hot topic in chemical, food and pharmaceutical industries, especially when dealing with chiral drugs. Enantiomeric recognition not only leads to better understanding of the mechanism of molecular recognition in biological systems, but may further assist in developing useful molecular devices in biochemical and pharmaceutical studies. By emerging nanotechnology and exploiting nanomaterials in sensing applications, a great deal of attention has been given to the design of optical nanoprobes that are able to discriminate enantiomers of chiral analytes. This review explains how engineering nanoparticles (NPs) with desired physicochemical properties allows... 

    Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application

    , Article Biologicals ; Volume 48 , 2017 , Pages 39-46 ; 10451056 (ISSN) Nasiri, B ; Mashayekhan, S ; Sharif University of Technology
    Academic Press  2017
    Due to the avascular nature of articular cartilage, damaged tissue has little capacity for spontaneous healing. Three-dimensional scaffolds have potential for use in tissue engineering approach for cartilage repair. In this study, bovine cartilage tissue was decellularized and chemically crosslinked hybrid chitosan/extracellular matrix (ECM) scaffolds were fabricated with different ECM weight ratios by simple freeze drying method. Various properties of chitosan/ECM scaffolds such as microstructure, mechanical strength, swelling ratio, and biodegradability rate were investigated to confirm improved structural and biological characteristics of chitosan scaffolds in the presence of ECM. The... 

    The effects of thymus plant extracts on single breast cancer cell morphology in the microfluidic channel

    , Article 2018 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2018, 3 December 2018 through 6 December 2018 ; 2019 , Pages 647-651 ; 9781538624715 (ISBN) Ahmad, M. R ; Mansor, M. A ; Alsadat Rad, M ; Soo-Beng Khoo, A ; Ahmad, M ; Marzuki, M ; Physiological Measurement; Sarawak Convention Bureau ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Microfluidics based systems could be useful for drug discovery as they allow for miniaturization and could potentially be run as multiple parallel cell based assays. Such miniaturization allows assays at single cell level and reduces the amount of test material needed, which, in the case of natural product extracts, simplifies the preparation. Thyme species extracts have been reported to show some promising anti-cancer effects. In the present work, we used a microfluidics based system to study the effects of Thymus kotschyanusm Boiss plant extract on two human breast cancer cells lines which are MDA-MB-231 and MCF-7. For better understanding a single cancer cell death mechanism and a flow... 

    Serological assays and host antibody detection in coronavirus-related disease diagnosis

    , Article Archives of Virology ; Volume 166, Issue 3 , 2021 , Pages 715-731 ; 03048608 (ISSN) Dowlatshahi, S ; Shabani, E ; Abdekhodaie, M. J ; Sharif University of Technology
    Springer  2021
    Coronaviruses (CoV) are a family of viral pathogens that infect both birds and mammals, including humans. Seven human coronaviruses (HCoV) have been recognized so far. HCoV-229E, -OC43, -NL63, and -HKU1 account for one-third of common colds with mild symptoms. The other three members are severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2. These viruses are responsible for SARS, MERS, and CoV disease 2019 (COVID-19), respectively. A variety of diagnostic techniques, including chest X-rays, computer tomography (CT) scans, analysis of viral nucleic acids, proteins, or whole virions, and host antibody detection using serological assays have... 

    Synthesis of Graphene Structures by Chemical Vapor Deposition Method and Evaluation of their Electrical and Biological Properties

    , M.Sc. Thesis Sharif University of Technology Kiani Shahvandi, Fatemeh (Author) ; Simchi, Abdolreza (Supervisor)
    Graphene is a newly developed nanomaterial that has resived considerable attention in recent years. Graphene – based structures having remarkable properties, e.g. high specific surface area, ultrahigh electrical conductivity and good biocompability, are ideal choices for nanomedical applications such as biosensors and cell culture scaffolds. So, in this project 2D graphene and 3D graphene foam structures were synthesized by chemical vapor deposition (CVD) method and their electrical and biological properties were evaluated. First step of this project was to design and make a CVD system suitable for the synthesis of high quality graphene structures, i.e. single layer graphene and 3D graphene... 

    Improving the Biomedical Performance of Metal–Organic Frameworks in Drug Delivery Systems: in Vitro Studies

    , M.Sc. Thesis Sharif University of Technology Bahmanpour, Maryam (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    In this study, water-stable metal-organic frameworks, UiO-66-(CO2H)2, MIL-53-NH2 (Al), ZIF-8 and MIP-202 (Zr), were selected to study the influence of using plant extracts in drug loading process and also its targeted release from these compounds. For this purpose, at first the solution of different plant extracts was used separately as a synthetic solvent in the preparation of the desired MOFs to be present in the structure of these compounds and increase the interaction of the drug with the nanocarrier. Then, a coating of plant extract was applied on the nanocarrier containing the drug after loading the drug to prevent the rapid penetration of the drug from the cavities of MOFs (drug... 

    Large scale inkjet-printing of carbon nanotubes electrodes for antioxidant assays in blood bags

    , Article Journal of Electroanalytical Chemistry ; Vol. 717-718 , 2014 , Pages 61-68 ; ISSN: 15726657 Lesch, A ; Cortes Salazar, F ; Prudent, M ; Delobel, J ; Rastgar, S ; Lion, N ; Tissot J. D ; Tacchini, P ; Girault, H. H ; Sharif University of Technology
    Herein, we present the large scale fabrication of carbon nanotubes (CNT) electrodes supported on flexible polymeric sheets by subsequent multilayer inkjet printing of a silver layer for electrical connection, CNT layers as active electrode material and an insulation layer to define a stand-alone CNT active electrode area with high accuracy. Optical and electrochemical characterization using several redox mediators demonstrates the reproducibility of the electrode surfaces and their functionality even with a single inkjet printed CNT layer. These electrodes are targeted to the clinical sector for the determination of the antioxidant power (AOP) of biologically relevant fluids by... 

    Fluorescent quantification of size and lamellarity of membrane nanotubes

    , Article European Biophysics Journal ; Vol. 43, Issue. 12 , 2014 , pp. 595-602 ; ISSN: 1432-1017 Baroji,Y. F ; Oddershede, L. B ; Reihani, S. N. S ; Bendix, P. M ; Sharif University of Technology
    Membrane nanotubes, ubiquitous in cellular systems, adopt a spectrum of curvatures and shapes that are dictated by their intrinsic physical characteristics as well as their interactions with the local cellular environment. A high bending flexibility is needed in the crowded cytoplasm where tubes often need to bend significantly in the axial direction at sub-micron length scales. We find the stiffness of spontaneously formed membrane nanotubes by measuring the persistence length of reconstituted membrane nanotubes freely suspended in solution and imaged by fluorescence microscopy. By quantifying the tube diameter we demonstrate for the first time that the persistence length scales linearly... 

    Effect of mozart music on hippocampal content of BDNF in postnatal rats

    , Article Basic and Clinical Neuroscience ; Volume 2, Issue 3 , 2011 , Pages 21-26 ; 2008126X (ISSN) Marzban, M ; Shahbazi, A ; Tondar, M ; Soleimani, M ; Bakhshayesh, M ; Moshkforoush, A ; Sadati, M ; Zendehrood, S. A ; Joghataei, M. T ; Sharif University of Technology
    Introduction: It has shown that listening to Mozart music can potentiate spatial tasks in human; and reduce seizure attacks in epileptic patients. A few studies have reported the effects of prenatal plus postpartum exposure of mice to the Mozart music on brain-drived neurotrophic factor (BDNF) in the hippocampus. Here we investigated the effect of postpartum exposure to The Mozart music on BDNF concentration in the hippocampus of rat. Methods: Thirty male one day old newborn Wistar rats divided randomly in two equal experimental and control groups. Experimental group exposed to slow rhythm Mozart music (Mozart Sonata for two pianos KV 448, 6 hour per day; sound pressure levels, between 80...