Loading...
Search for: atomic-force-microscope--afm
0.005 seconds

    Dynamic modeling and sensitivity analysis of atomic force microscope pushing force in nanoparticle manipulation on a rough substrate [electronic resource]

    , Article Journal of Advanced Science, Engineering and Medicine ; 2013, Vol. 5, pp. 1-10 Babahosseini, H. (Hesam) ; Mahboobi, Seyed Hanif ; Meghdari, Ali ; Sharif University of Technology
    Abstract
    An Atomic Force Microscope (AFM) is a capable tool to manipulate nanoparticles by exerting pushing force on the nanoparticles located on the substrate. In reality, the substrate cannot be considered as a smooth surface particularly at the nanoscale. Hence, the particle may encounter a step on the substrate during a manipulation. In this study, dynamics of the nanoparticle on a stepped substrate and critical pushing force in the manipulation are investigated. There are two possible dynamic modes that may happen in the manipulation on the stepped substrate. In one mode, the nanoparticle may slide on the step edge and then climb up to the step which is a desired mode. Another possible mode is... 

    An investigation on the flexural sensitivity and resonant frequency of an AFM with sidewall and top-surface probes

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 419-427 ; 9780791844472 (ISBN) Kahrobaiyan, M. H ; Ahmadian, M. T ; Haghighi, P ; Haghighi, A ; Sharif University of Technology
    2010
    Abstract
    The resonant frequencies and flexural sensitivities of an atomic force microscope (AFM) assembled cantilever probe which comprises a horizontal cantilever, a vertical extension and two tips located at the free ends of the cantilever and the extension are studied. This probe makes the AFM capable of simultaneous topography at top-surface and sidewalls of microstructures especially microgears which leads to a time-saving swift scanning process. In this work, the effects of the sample surface contact stiffness and the geometrical parameters such as the ratio of the vertical extension length to the horizontal cantilever length and the distance of the vertical extension from clamped end of the... 

    Tailoring of morphology and crystal structure of nanomaterials in MgO-TiO 2 system by controlling Mg:Ti molar ratio

    , Article Journal of Sol-Gel Science and Technology ; Volume 64, Issue 1 , October , 2012 , Pages 135-144 ; 09280707 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    Springer  2012
    Abstract
    The morphological manipulation and structural characterisation of TiO 2-MgO binary system by an aqueous particulate sol-gel route were reported. Different crystal structures including pure MgTiO 3, mixtures of MgTiO 3 and TiO 2 and mixtures of MgTiO 3 and Mg 2TiO 4 were tailored by controlling Mg:Ti molar ratio and annealing temperatures as the processing parameters. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that all compounds crystallised at the low temperature of 500 °C. Furthermore, it was found that the average crystallite size of the compounds depends upon the Mg:Ti molar ratio as well as the annealing temperature, being in the range 3-5 nm at... 

    Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes

    , Article Journal of Semiconductors ; Volume 31, Issue 7 , 2010 ; 16744926 (ISSN) Yeganeh, M. A ; Rahmatollahpur, S. H ; Sharif University of Technology
    2010
    Abstract
    Small high-quality Au/P-Si Schottky barrier diodes (SBDs) with an extremely low reverse leakage current using wet lithography were produced. Their effective barrier heights (BHs) and ideality factors from current-voltage (I -V) characteristics were measured by a conducting probe atomic force microscope (C-AFM). In spite of the identical preparation of the diodes there was a diode-to-diode variation in ideality factor and barrier height parameters. By extrapolating the plots the built in potential of the Au /p-Si contact was obtained as Vbi D 0:5425 V and the barrier height value φB(C-V) was calculated to be φB(C-V) D 0:7145 V for Au/p-Si. It is found that for the diodes with diameters... 

    Vibration control of AFM tip for nano-manipulation using combined sliding mode techniques

    , Article 2007 7th IEEE International Conference on Nanotechnology - IEEE-NANO 2007, Hong Kong, 2 August 2007 through 5 August 2007 ; 2007 , Pages 106-111 ; 1424406080 (ISBN); 9781424406081 (ISBN) Delnavaz, A ; Jalili, N ; Zohoor, H ; Sharif University of Technology
    2007
    Abstract
    Atomic force microscope (AFM) can be used as nanorobotics manipulation tool for nano particle positioning, pushing, indenting, cutting and etc. control the vibration behavior of AFM and make the micro-cantilever tip track specified trajectory is very crucial to appropriately manipulate particles in nano-scales. The novel combined sliding mode approach has been investigated in this paper to obtain robust nonlinear control scheme for nanomanipulation. First (classical) and second order (SOSM) sliding mode techniques have been developed and applied to nonlinear dynamical and uncertain model of AFM cantilever beam to track the desired trajectories. The simulation results show chattering in... 

    Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    , Article Electrochimica Acta ; Volume 89 , February , 2013 , Pages 90-97 ; 00134686 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film...