Loading...
Search for: atomic-force-microscopes
0.007 seconds
Total 34 records

    Dynamic modeling and sensitivity analysis of atomic force microscope pushing force in nanoparticle manipulation on a rough substrate [electronic resource]

    , Article Journal of Advanced Science, Engineering and Medicine ; 2013, Vol. 5, pp. 1-10 Babahosseini, H. (Hesam) ; Mahboobi, Seyed Hanif ; Meghdari, Ali ; Sharif University of Technology
    Abstract
    An Atomic Force Microscope (AFM) is a capable tool to manipulate nanoparticles by exerting pushing force on the nanoparticles located on the substrate. In reality, the substrate cannot be considered as a smooth surface particularly at the nanoscale. Hence, the particle may encounter a step on the substrate during a manipulation. In this study, dynamics of the nanoparticle on a stepped substrate and critical pushing force in the manipulation are investigated. There are two possible dynamic modes that may happen in the manipulation on the stepped substrate. In one mode, the nanoparticle may slide on the step edge and then climb up to the step which is a desired mode. Another possible mode is... 

    Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory

    , Article International Journal of Engineering Science ; Volume 48, Issue 12 , 2010 , Pages 1985-1994 ; 00207225 (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Rahaeifard, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this paper, the resonant frequency and sensitivity of atomic force microscope (AFM) microcantilevers are studied using the modified couple stress theory. The classical continuum mechanics is incapable of interpreting micro-structure-dependent size effects when the size of structures is in micron- and sub-micron scales. However, this dependency can be well treated by using non-classical continuum theories. The modified couple stress theory is a non-classic continuum theory which employs additional material parameters besides those appearing in classical continuum theory to treat the size-dependent behavior. In this work, writing differential equations of motion of AFM cantilevers together... 

    A fresh insight into the non-linear vibration of double-tapered atomic force microscope cantilevers by considering the Hertzian contact theory

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 225, Issue 1 , 2011 , Pages 233-247 ; 09544062 (ISSN) Sadeghi, A ; Zohoor, H ; Sharif University of Technology
    Abstract
    The non-linear flexural vibration for a double-tapered atomic force microscope cantilever has been investigated by using the Timoshenko beam theory. In this article, the normal and tangential tip-sample interaction forces are found from the Hertzian contact model, and the effects of the contact position, normal and lateral contact stiffness, height of the tip, thickness of the beam, angle between the cantilever and the sample surface, and breadth and height taper ratios on the non-linear frequency to linear frequency ratio have been studied. The differential quadrature method is employed to solve the non-linear differential equations of motion. The results show that the softening behaviour... 

    Theoretical description of the flexural vibration of dagger shaped atomic force microscope cantilevers

    , Article Journal of Scanning Probe Microscopy ; Volume 4, Issue 2 , 2009 , Pages 78-90 ; 15577937 (ISSN) Sadeghi, A ; Zohoor, H ; Sharif University of Technology
    Abstract
    The resonant frequency of flexural vibration for a dagger shaped atomic force microscope (AFM) cantilever has been investigated using the Timoshenko beam theory. Generally, three distinct regions are considered for dagger shaped cantilevers, one region with constant cross section and height and two double tapered regions. In this paper, the effects of the contact position, contact stiffness, the height of the tip, thickness of the beam, the height and breadth taper ratios of cantilever and the angle between the cantilever and the sample surface based on Timoshenko beam theory on the non-dimensional frequency and sensitivity to the contact stiffness have been studied. The differential... 

    Non-linear vibration of dagger-shaped atomic force microscope cantilevers by considering the Hertzian contact theory

    , Article Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics ; Volume 225, Issue 2 , 2011 , Pages 77-94 ; 14644193 (ISSN) Sadeghi, A ; Zohoor, H ; Sharif University of Technology
    2011
    Abstract
    The non-linear flexural vibration for a dagger-shaped atomic force microscope cantilever has been investigated using the Timoshenko beam theory. In this article, the normal and tangential tip-sample interaction forces are found from Hertzian contact model and the effects of the geometry, normal and lateral contact stiffness, height of the tip, thickness of the beam, the angle between the cantilever and the sample surface and breadth and height taper ratios on the non-linear frequency to linear frequency ratio have been studied. The differential quadrature method (DQM) is employed to solve the non-linear differential equations of motion. The results show that the softening behaviour is seen... 

    Dependency of barrier height and ideality factor on identically produced small Au/p-Si Schottky barrier diodes

    , Article Physica B: Condensed Matter ; Volume 405, Issue 16 , 2010 , Pages 3253-3258 ; 09214526 (ISSN) Yeganeh, M. A ; Rahmatollahpur, S ; Sadighi-Bonabi, R ; Mamedov, R ; Sharif University of Technology
    2010
    Abstract
    Small high-quality Au/p-Si Schottky barrier diodes (SBDs) with extremely low reverse leakage current using wet lithography were produced. Their effective barrier heights (BHs) and ideality factors from currentvoltage (IV) characteristics were measured by a conducting probe atomic force microscope (C-AFM). In spite of identical preparation of the diodes there was a diode-to-diode variation in ideality factor and barrier height parameters. By extrapolating the plots the built-in potential of the Au/p-Si contact was obtained as Vbi=0.5425 V and the barrier height value (ΦB(C-V)) was calculated to be ΦB(C-V)=0.7145 V for Au/p-Si for a typical 100 μm diode diameters. In the present work the... 

    Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes

    , Article Journal of Semiconductors ; Volume 31, Issue 7 , 2010 ; 16744926 (ISSN) Yeganeh, M. A ; Rahmatollahpur, S. H ; Sharif University of Technology
    2010
    Abstract
    Small high-quality Au/P-Si Schottky barrier diodes (SBDs) with an extremely low reverse leakage current using wet lithography were produced. Their effective barrier heights (BHs) and ideality factors from current-voltage (I -V) characteristics were measured by a conducting probe atomic force microscope (C-AFM). In spite of the identical preparation of the diodes there was a diode-to-diode variation in ideality factor and barrier height parameters. By extrapolating the plots the built in potential of the Au /p-Si contact was obtained as Vbi D 0:5425 V and the barrier height value φB(C-V) was calculated to be φB(C-V) D 0:7145 V for Au/p-Si. It is found that for the diodes with diameters... 

    Control of chaos in atomic force microscopes using delayed feedback based on entropy minimization

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 14, Issue 3 , 2009 , Pages 637-644 ; 10075704 (ISSN) Salarieh, H ; Alasty, A ; Sharif University of Technology
    2009
    Abstract
    Active chaos control of a tapping mode atomic force microscope (AFM) model via delayed feedback method is presented. The feedback gain is obtained and adapted according to a minimum entropy (ME) algorithm. In this method, stabilizing an unstable fixed point of the system Poincare map is achieved by minimizing the entropy of points distribution on the Poincare section. Simulation results show the feasibility of the proposed method in applying the delayed feedback technique for chaos control of an AFM system. © 2007 Elsevier B.V. All rights reserved  

    Torsional sensitivity and resonant frequency of an AFM with parallel sidewall probes

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010, Montreal, QC ; Volume 5 , 2010 , Pages 987-996 ; 9780791844137 (ISBN) Ahmadian, M. T ; Kahrobaiyan, M. H ; Haghighi, P ; Yousefi, A ; Sharif University of Technology
    2010
    Abstract
    The resonant frequencies and torsional sensitivities of an atomic force microscope (AFM) assembled cantilever probe which comprises a horizontal cantilever, two vertical extensions and two tips located at their free ends are studied. This probe makes the AFM capable of measuring, for instance, the outer/inner diameter, roundness and roughness of microstructures like micro-holes and micro nozzles which leads to a time-saving swift scanning process. In this work, the effects of the sample surface contact stiffness and the geometrical parameters such as the ratio of the vertical extension length to the horizontal cantilever length and the distance of the first vertical extension from the... 

    An investigation on the torsional sensitivity and resonant frequency of an AFM with sidewall and top-surface probes

    , Article ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010, Montreal, QC, 15 August 2010 through 18 August 2010 ; Volume 4 , 2010 , Pages 589-599 ; 9780791844120 (ISBN) Kahrobaiyan, M. H ; Ahmadian, M. T ; Haghighi, P ; Haghighi, A ; Sharif University of Technology
    2010
    Abstract
    The resonant frequencies and torsional sensitivities of an atomic force microscope (AFM) with assembled cantilever probe (ACP) are studied. This ACP comprises a horizontal cantilever, a vertical extension and two tips located at the free ends of the cantilever and the extension which makes the AFM capable of simultaneous topography at top-surface and sidewalls of microstructures especially microgears which consequently leads to a time-saving swift scanning process. In this work, the effects of the sample surface contact stiffness and the geometrical parameters such as the ratio of the vertical extension length to the horizontal cantilever length and the distance of the vertical extension... 

    An investigation on the flexural sensitivity and resonant frequency of an AFM with sidewall and top-surface probes

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 419-427 ; 9780791844472 (ISBN) Kahrobaiyan, M. H ; Ahmadian, M. T ; Haghighi, P ; Haghighi, A ; Sharif University of Technology
    2010
    Abstract
    The resonant frequencies and flexural sensitivities of an atomic force microscope (AFM) assembled cantilever probe which comprises a horizontal cantilever, a vertical extension and two tips located at the free ends of the cantilever and the extension are studied. This probe makes the AFM capable of simultaneous topography at top-surface and sidewalls of microstructures especially microgears which leads to a time-saving swift scanning process. In this work, the effects of the sample surface contact stiffness and the geometrical parameters such as the ratio of the vertical extension length to the horizontal cantilever length and the distance of the vertical extension from clamped end of the... 

    Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope

    , Article Applied Mathematical Modelling ; Volume 35, Issue 12 , 2011 , Pages 5903-5919 ; 0307904X (ISSN) Kahrobaiyan, M. H ; Rahaeifard, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip-sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The... 

    Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 12, Issue. PART A , 2010 , pp. 205-214 ; ISBN: 9780791843857 Babahosseini, H ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
    Abstract
    This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the... 

    Synthesis of highly pure nanocrystalline and mesoporous CaTiO3 by a particulate sol-gel route at the low temperature

    , Article Journal of Sol-Gel Science and Technology ; Volume 68, Issue 2 , 2013 , Pages 324-333 ; 09280707 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2013
    Abstract
    The low temperature perovskite-type calcium titanate (CaTiO3) thin films and powders with nanocrystalline and mesoporous structure were prepared by a straightforward particulate sol-gel route. The prepared sol had a narrow particle size distribution about 17 nm. X-ray diffraction and Fourier transform infrared spectroscopy revealed that, the synthesized powders had highly pure and crystallized CaTiO3 structure with preferable orientation growth along (1 2 1) direction at 400-800 °C. The activation energy of crystal growth was calculated 5.73 kJ/mol. Furthermore, transmission electron microscope images showed that the average crystallite size of the powders annealed at 400 °C was around 3.5... 

    Tailoring of morphology and crystal structure of nanomaterials in MgO-TiO 2 system by controlling Mg:Ti molar ratio

    , Article Journal of Sol-Gel Science and Technology ; Volume 64, Issue 1 , October , 2012 , Pages 135-144 ; 09280707 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    Springer  2012
    Abstract
    The morphological manipulation and structural characterisation of TiO 2-MgO binary system by an aqueous particulate sol-gel route were reported. Different crystal structures including pure MgTiO 3, mixtures of MgTiO 3 and TiO 2 and mixtures of MgTiO 3 and Mg 2TiO 4 were tailored by controlling Mg:Ti molar ratio and annealing temperatures as the processing parameters. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that all compounds crystallised at the low temperature of 500 °C. Furthermore, it was found that the average crystallite size of the compounds depends upon the Mg:Ti molar ratio as well as the annealing temperature, being in the range 3-5 nm at... 

    The effect of cysteine on electrodeposition of gold nanoparticle

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 176, Issue 16 , 2011 , Pages 1307-1312 ; 09215107 (ISSN) Dolati, A ; Imanieh, I ; Salehi, F ; Farahani, M ; Sharif University of Technology
    2011
    Abstract
    The most applications of gold nanoparticles are in the photo-electronical accessories and bio-chemical sensors. Chloride solution with cysteine additive was used as electrolyte in gold nanoparticles electrodeposition. The nucleation and growing mechanism were studied by electrochemical techniques such as cyclic voltammetry and chronoamperometry, in order to obtain a suitable nano structure. The deposition mechanism was determined as instantaneous nucleation and the dimension of particles was controlled in nanometric particle size range. Atomic Force Microscope was used to evaluate the effect of cysteine on the morphology and topography of gold nanoparticles. Finally the catalytic property of... 

    Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 6 , August , 2010 , Pages 539-544 ; 9780791849033 (ISBN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M.T ; Sharif University of Technology
    2010
    Abstract
    The purpose of this paper is the enhancement of the AFM sensitivity through the selection of an optimized FGM micro cantilever beam. In this paper, resonant frequencies and sensitivities of first two modes of micro cantilever which is made of functionally graded materials are investigated and a relationship is developed to evaluate the sensitivity of FGM micro cantilever. Effect of volume fraction of materials and surface contact stiffness on the resonant frequencies and sensitivities are studied. The rectangular FGM beam is modeled by an Euler-Bernoulli beam theory. It is assumed that beam is made of a mixture of metal and ceramic with properties varying through the thickness following a... 

    Nonlinear vibration of rectangular atomic force microscope cantilevers by considering the Hertzian contact theory

    , Article Canadian Journal of Physics ; Volume 88, Issue 5 , 2010 , Pages 333-348 ; 00084204 (ISSN) Sadeghi, A ; Zohoor, H ; Sharif University of Technology
    Abstract
    The nonlinear flexural vibration for a rectangular atomic force microscope cantilever is investigated by using Timoshenko beam theory. In this paper, the normal and tangential tip-sample interaction forces are found from a Hertzian contact model and the effects of the contact position, normal and lateral contact stiffness, tip height, thickness of the beam, and the angle between the cantilever and the sample surface on the nonlinear frequency to linear frequency ratio are studied. The differential quadrature method is employed to solve the nonlinear differential equations of motion. The results show that softening behavior is seen for most cases and by increasing the normal contact... 

    Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 12, Issue PART A , 2010 , Pages 205-214 ; 9780791843857 (ISBN) Babahosseini, H ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the... 

    Dynamics modeling of nanoparticle in AFM-based manipulation using two nanoscale friction models

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 225-234 ; 9780791843857 (ISBN) Babahosseini, H ; Mahboobi, S. H ; Meghdari, A ; Sharif University of Technology
    Abstract
    Application of atomic force microscope (AFM) as a manipulator for pushing-based positioning of nanoparticles has been of considerable interest during recent years. Nevertheless comprehensive researches has been done on modeling and the dynamics analysis of nanoparticle behavior during the positioning process. The development of dynamics modeling of nanoparticle is crucial to have an accurate manipulation. In this paper, a comprehensive model of pushing based manipulation of a nanoparticle by AFM probe is presented. The proposed nanomanipulation model consists of all effective phenomena in nanoscale. Nanoscale interaction forces, elastic deformation in contact areas and friction forces in...