Loading...
Search for: atomic-ratio
0.008 seconds

    Magnetic stirring assisted hydrothermal synthesis of Na3MnCO3PO4 cathode material for sodium-ion battery

    , Article Ceramics International ; Volume 47, Issue 19 , 2021 , Pages 26929-26934 ; 02728842 (ISSN) Hassanzadeh, N ; Sadrnezhaad, S.K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Na3MnCO3PO4 (NMCP) is considered one of the promising cathode materials for sodium-ion batteries due to its high theoretical capacity. The hydrothermal method is an efficient, environmental-friendly, and simple route with low instrument cost to prepare active cathode materials such as NMCP. In this research, magnetic stirring was applied to promote the hydrothermal synthesis, and NMCP was produced by controlling different stirring times. This method results in the formation of pure NMCP upon only 45 min processing time. According to the ICP results, the Na to Mn ratio in the NMCP approached the stoichiometric value of 3 by prolonging the stirring time. By analyzing the charge-discharge... 

    In-depth characterization of light, medium and heavy oil asphaltenes as well as asphaltenes subfractions

    , Article Fuel ; Volume 324 , 2022 ; 00162361 (ISSN) Salehzadeh, M ; Husein, M. M ; Ghotbi, C ; Dabir, B ; Taghikhani, V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Asphaltenes, and their related issues, have been the focus of many literature investigations. However, in-depth analysis of asphaltenes structure and its relation to asphaltenes stability has been considered by fewer studies. In this research, extensive analysis of the structure of asphaltenes extracted from light, medium, and heavy oils is provided, together with analysis of three subfractions of the medium oil asphaltene having the least, intermediate, and highest solubilities. To this end, elemental analysis, EDX, mass spectroscopy, FTIR, NMR, XRD, and SEM results were collected. Higher hydrogen content and hydrogen/carbon atomic ratio, lower aromatic nature and olefinic entities were... 

    Water-based sol-gel nanocrystalline barium titanate: Controlling the crystal structure and phase transformation by Ba:Ti atomic ratio

    , Article Journal of Materials Science ; Volume 44, Issue 18 , 2009 , Pages 4959-4968 ; 00222461 (ISSN) Mohammadi, M. R ; Esmaeili Rad, A ; Fray, D. J ; Sharif University of Technology
    2009
    Abstract
    Highly stable, water-based barium titanate (BaTiO3) sols were developed by a low cost and straightforward sol-gel process. Nanocrystalline barium titanate thin films and powders with various Ba:Ti atomic ratios were produced from the aqueous sols. The prepared sols had a narrow particle size distribution in the range 21-23 nm and they were stable over 5 months. X-ray diffraction pattern revealed that powders contained mixture of hexagonal- or perovskite-BaTiO3 as well as a trace of Ba2Ti 13O22 and Ba4Ti2O27 phases, depending on annealing temperature and Ba:Ti atomic ratio. Highly pure barium titanate with cubic perovskite structure achieved with Ba:Ti = 50:50 atomic ratio at the high...