Loading...
Search for: atomic-spectroscopy
0.005 seconds

    Study of the effect of frequency in pulse electrodeposition on Au-Ni from cyanide-citrate electrolyte by the aim of design of experiment

    , Article Advanced Materials Research, 15 December 2011 through 18 December 2011 ; Volume 410 , December , 2012 , Pages 377-381 ; 10226680 (ISSN) ; 9783037853160 (ISBN) Moakhar, R. S ; Imanieh, I ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Abstract
    The aim of this paper is to study the influence of frequency in pulse electrodeposition, on the current efficiency, Ni content and surface morphology of deposits from a novel cyanide-citrate electrolyte with 20 mM gold as KAu(CN) 2 and 7 mM NiSO 4, with the aim of design of experiment by respond surface method (RSM). Frequency was in the range of 1-200 Hz in constant average current density, temperature, and duty cycle of 7 mA/cm 2, 59 °C and 55% respectively. Composition of the deposits was determined by atomic absorption spectroscopy (AAS). Additionally, deposits were characterized by scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDS). It was shown that from... 

    Growth of GaAs/AlxGa1- xAs layers by LPE method and their characterization by SIMS

    , Article EPJ Applied Physics ; Volume 55, Issue 3 , 2011 ; 12860042 (ISSN) Arghavani Nia, B ; Ghaderi, A ; Solaymani, S ; Oskoie, M ; Sharif University of Technology
    Abstract
    Growth of thin layers of compound semiconductors such as GaAs and Al x Ga1-x As was obtained by Liquid Phase Epitaxy (LPE) at 838-828 ° C in thickness range of 0.1-4.3 μm which was estimated by Scanning Electron Microscopy (SEM). By Secondary Ion Mass Spectroscopy (SIMS) measurements, type of impurity atoms and their density and uniformity with respect to thickness were measured. In this way we are sure that variation of impurity atoms such as Si, Te, Sn and Ge indicates that epilayers were formed uniformly and it demonstrated that the LPE growth was a suitable way to obtain a good quality of epitaxy layers. Amount of composition parameter x in the compound semiconductor AlxGa1-xAs was... 

    The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets

    , Article Carbon ; Volume 48, Issue 2 , February , 2010 , Pages 509-519 ; 00086223 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    Graphene thin films with very low concentration of oxygen-containing functional groups were produced by reduction of graphene oxide nanosheets (prepared by using a chemical exfoliation) in a reducing environment and using two different heat treatment procedures (called one and two-step heat treatment procedures). The effects of heat treatment procedure and temperature on thickness variation of graphene platelets and also on reduction of the oxygen-containing functional groups of the graphene oxide nanosheets were studied by atomic force microscopy and X-ray photoelectron spectroscopy. While formation of the thin films composed of single-layer graphene nanosheets with minimum thickness of... 

    Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 47 , 2009 , Pages 20214-20220 ; 19327447 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    Abstract
    Graphene oxide platelets synthesized by using a chemical exfoliation method were deposited on anatase TiO2 thin films. Postannealing of the graphene oxide/TiO2 thin films at 400 °C in air resulted in partial formation of a Ti-C bond between the platelets and their beneath thin film. By using atomic force microscopy and X-ray photoelectron spectroscopy analyses, UV-visible light-induced photocatalytic reduction of the graphene oxide platelets of the annealed graphene oxide/TiO2. thin films immersed in ethanol was studied for the different irradiation times. After 4 h of photocatalytic reduction, the vertical space between the platelets decreased from about 1.1 to less than 0.8 nm and the... 

    Silver nanocube crystals on titanium nitride buffer layer

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 10 , 2009 ; 00223727 (ISSN) Akhavan, O ; Sharif University of Technology
    2009
    Abstract
    Thermally stable cubic silver nanoparticles were grown by simply annealing a silver nano-thickness layer on a crystalline TiN buffer layer deposited on a Si(1 0 0) substrate. Formation of silver nanocubes was investigated by scanning electron microscopy, atomic force microscopy, x-ray diffractometry and UV-visible spectroscopy. The shapes of the silver nanoparticles were controlled by the thickness of the Ag layer. The silver nanocubes were self-ordered single crystals bounded mainly by {1 0 0} facets. It was found that a change in the shape of the nanoparticles from semi-spherical to cubic resulted in a substantial variation of their surface plasmon resonance absorption peak from 410 to 590... 

    Synthesizing and staining manganese oxide nanoparticles for cytotoxicity and cellular uptake investigation

    , Article Biochimica et Biophysica Acta - General Subjects ; Vol. 1840, Issue. 1 , 2014 , pp. 428-433 ; ISSN: 03044165 Omid, H ; Oghabian, M. A ; Ahmadi, R ; Shahbazi, N ; Hosseini, H. R. M ; Shanehsazzadeh, S ; Zangeneh, R. N ; Sharif University of Technology
    Abstract
    Background For decades, contrast agents have been used to reduce longitudinal (T1) or transverse (T2) relaxation times. High toxicity of gadolinium-based contrast agents leads researchers to new T1 contrast agents. Manganese oxide (MnO) nanoparticle (NP) with the lower peril and good enough signal change ability has been offered as a new possibility for magnetic resonance imaging (MRI). Methods The synthesized NPs were investigated for physicochemical and biological properties by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscope, dynamic light scattering (DLS), inductively coupled plasma, enzyme-linked immunosorbent assay, and 3 T magnetic resonance... 

    The use of a cis-dioxomolybdenum(VI) dinuclear complex with quadradentate 1,4-benzenediylbis(benzyldithiocarbamate)(2-) as model compound for the active site of oxo transfer molybdoenzymes: Reactivity, kinetics, and catalysis

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 88 , 2012 , Pages 210-215 ; 13861425 (ISSN) Moradi Shoeili, Z ; Boghaei, D. M ; Sharif University of Technology
    2012
    Abstract
    Dinuclear cis-dioxomolybdenum(VI) complex [{MoO 2(Bz 2Benzenediyldtc)} 2] coordinated by a quadradentate dithiocarbamate (Bz 2Benzenediyldtc 2- = 1,4-benzenediylbis(benzyldithiocarbamate)(2-)) has been prepared and characterized by elemental analysis, 13C NMR, IR and UV-vis spectroscopy. The kinetics of the oxygen atom transfer between [{MoO 2(Bz 2Benzenediyldtc)} 2] and PPh 3 was studied spectrophotometrically in CH 2Cl 2 medium at 520 nm and four different temperatures, 288, 293, 298 and 303 K, respectively. The reaction follows second order kinetics with the rate constant k = 0.163(2) M -1 S -1 and its increasingly strong absorption at 520 nm clearly indicate the formation of a μ-oxo... 

    Effect of annealing temperature on growth of Ce-ZnO nanocomposite thin films: X-ray photoelectron spectroscopy study

    , Article Thin Solid Films ; Volume 520, Issue 2 , November , 2011 , Pages 721-725 ; 00406090 (ISSN) Yousefi, M ; Azimirad, R ; Amiri, M ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    Ce-doped ZnO nanocomposite thin films with Ce/Zn ratio fixed at optimum value (10 at.%) have been prepared via sol-gel method at different annealing temperatures varied from 180 to 500 °C. The synthesized samples were characterized employing atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) techniques. According to AFM analysis, the average grain size increased from about 70 nm to 150 nm by increasing the annealing temperature from 300 to 500 °C. Moreover, based on the XPS data analysis, it was found that three major metal ions namely Ce 3+, Ce4+, and Zn2+ coexist on the surface of the nanocomposite films. XPS data analysis also revealed that... 

    Surface chemistry of atmospheric plasma modified polycarbonate substrates

    , Article Applied Surface Science ; Volume 257, Issue 23 , September , 2011 , Pages 9836-9839 ; 01694332 (ISSN) Yaghoubi, H ; Taghavinia, N ; Sharif University of Technology
    2011
    Abstract
    Surface of polycarbonate substrates were activated by atmospheric plasma torch using different gas pressure, distance from the substrates, velocity of the torch and number of treatments. The modifications were analyzed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Plasma treatment caused the surface characteristics to become more hydrophilic as measured by the water contact angle, which decreased from 88° to 18°. The decrease in contact angle was mainly due to oxidation of the surface groups, leading to formation of polar groups with hydrophilic property. XPS results showed an increase in the intensity of... 

    Photoconductivity and diode effect in Bi rich multiferroic BiFeO 3 thin films grown by pulsed-laser deposition

    , Article Journal of Materials Science: Materials in Electronics ; Volume 22, Issue 7 , 2011 , Pages 815-820 ; 09574522 (ISSN) Ahadi, K ; Mahdavi, S. M ; Nemati, A ; Kianinia, M ; Sharif University of Technology
    2011
    Abstract
    Bismuth ferrite, BiFeO 3, is almost the only material that is simultaneously magnetic and a strong ferroelectric at room temperature. As a result it is the most investigated multiferroic material. In this study, bismuth ferrite thin films were deposited on silicon wafer (100) and glass by pulsed-laser deposition and their structural, optical, and electrical properties were measured. Our study indicates that Bi richness in these films can stimulate formation of oxygen vacancy in the system which in its turn leads to delocalization of carriers and a more intensified photoconductivity response. X-ray diffraction analysis revealed formation of BiFeO 3 (BFO), but it also showed formation of Bi 2O... 

    Hydrothermal synthesis of aligned Hydroxyapatite nanorods with ultra-high crystallinity

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 109-116 ; 1728-144X (ISSN) Manafi, S ; Rahimipour, M. R ; Yazdani, B ; Sadrnezhaad, S. K ; Amin, M. H ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Hydroxyapatite nanorods aligned with ultrahigh crystallinity and high-yield were successfully synthesized through a hydrothermal approach. In this experiment, a new composition of cetyltrimethylammonium bromide ((CH 3(CH2)15N+(CH3) 3Br-) was designated as CTAP)/Ca(NO3) 2/ (NH4)2HPO4/NaOH and distilled water under hydrothermal condition, to synthesize single crystal HAp nanorods with diameter of 20 ± 10 nm and length of 80 ± 20 nm, was introduced. Crystal phases were determined by X-ray diffraction (XRD). Scanning electron microscope (SEM) was applied to investigate the morphology. The microstructure of the HAp products were further observed by transmission electron microscope (TEM) and high... 

    Nanomechanical properties of TiO2 granular thin films

    , Article ACS Applied Materials and Interfaces ; Volume 2, Issue 9 , 2010 , Pages 2629-2636 ; 19448244 (ISSN) Yaghoubi, H ; Taghavinia, N ; Keshavarz Alamdari, E ; Volinsky, A.A ; Sharif University of Technology
    2010
    Abstract
    Post-deposition annealing effects on nanomechanical properties of granular TiO2 films on soda-lime glass substrates were studied. In particular, the effects of Na diffusion on the films' mechanical properties were examined. TiO2 photocatalyst films, 330 nm thick, were prepared by dip-coating using a TiO2 sol, and were annealed between 100 °C and 500 °C. Film's morphology, physical and nanomechanical properties were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, differential thermo-gravimetric analysis, and nanoindentation. Contrary to expectations, the maximum film hardness was achieved for 300°C annealing, with a value of 0.69 ± 0.05 GPa.... 

    Synthesis and electrochromic study of sol-gel cuprous oxide nanoparticles accumulated on silica thin film

    , Article Thin Solid Films ; Volume 517, Issue 24 , 2009 , Pages 6700-6706 ; 00406090 (ISSN) Akhavan, O ; Tohidi, H ; Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    In this study, electrochromic properties of cuprous oxide nanoparticles, self-accumulated on the surface of a sol-gel silica thin film, have been investigated by using UV-visible spectrophotometry in a lithium-based electrolyte cell. The cuprous oxide nanoparticles showed a reversible electrochromic process with a thin film transmission reduction of about 50% in a narrow wavelength range of 400-500 nm, as compared to the bleached state of the film. Using optical transmission measurement, we have found that the band gap energy of the films reduced from 2.7 eV for Cu2O to 1.3 eV for CuO by increasing the annealing temperature from 220 to 300 °C in an N2 environment for 1 h. Study of the band... 

    Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples

    , Article Journal of Hazardous Materials ; Volume 165, Issue 1-3 , 2009 , Pages 353-358 ; 03043894 (ISSN) Bagheri, H ; Naderi, M ; Sharif University of Technology
    2009