Loading...
Search for: austenite-decomposition
0.011 seconds

    A mathematical model for prediction of austenite phase transformation

    , Article Materials Letters ; Volume 58, Issue 10 , 2004 , Pages 1597-1601 ; 0167577X (ISSN) Serajzadeh, S ; Sharif University of Technology
    2004
    Abstract
    In this study, a model is developed to predict austenite phase transformation by means of Avrami's model and the finite element method. For doing so, the Avrami-type rate equation is evaluated with the modified Euler's method to handle the kinetics of phase change under non-isothermal conditions. Also, to simultaneously consider the effect of temperature variations on austenite decomposition, heat conduction equation is solved using a two-dimensional finite element approach. To establish the reliability of theoretical results, a comparison is made between simulated and experimental cooling curves for two grades of carbon steel. © 2003 Elsevier B.V. All rights reserved  

    Hot rolling and direct cooling

    , Article Comprehensive Materials Processing ; Vol. 3 , 2014 , pp. 377-396 ; ISBN: 9780080965338 Serajzadeh, S ; Sharif University of Technology
    Abstract
    Knowledge of process parameters during and after hot rolling is a significant requirement in order to produce a material with the desired microstructures and mechanical properties. In continuous hot rolling mills, different stages may exist, including water descaling, rolling stands, interstand sections, and run-out table. In each of these sections, various thermal and/or mechanical conditions are applied on the rolling metal that would affect material response in successive stages. In other words, an integrated model should be employed in hot rolling operations to evaluate metal behavior and microstructural events at the same time. Therefore, the thermal-mechanical response as well as... 

    Prediction of temperature variations and kinetics of austenite phase change on the run-out table

    , Article Materials Science and Engineering A ; Volume 421, Issue 1-2 , 2006 , Pages 260-267 ; 09215093 (ISSN) Serajzadeh, S ; Sharif University of Technology
    2006
    Abstract
    In this paper, a mathematical model has been developed to determine temperature distribution on the run-out table. The variational formulation and the finite element method have been employed to solve the governing conduction-convection equation. In order to avoid numerical instabilities due to the convection term, the heat transfer equation is first transformed to the standard form and then Raylieght-Ritz approximation technique and the finite element method have been utilized to solve the equation. To include the effect of phase transformation during cooling of steel, a second-order rate equation for describing austenite decomposition kinetics is coupled with the heat transfer model. A... 

    Thermal stresses and kinetics of phase transformation on the run-out table after hot strip rolling of low-carbon steels

    , Article International Journal of Advanced Manufacturing Technology ; Volume 83, Issue 9-12 , 2016 , Pages 1725-1736 ; 02683768 (ISSN) Hasan Nasab, M ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    A thermo-elastic analysis coupled with a phase change model is employed to evaluate thermal stresses as well as progress of austenite decomposition after hot strip rolling operations. The thermo-mechanical finite element analysis is utilized to assess the distributions of temperature and thermal stresses during cooling while at the same time, a model based on the additivity rule is used to determine the rate of austenite to ferrite decomposition. The proposed model is applicable to multi-pass rolling schedules while the effects of different process parameters including the rolling speed and cooling configuration of the run-out table can be taken into account. In order to verify the... 

    Simulation of austenite decomposition in continuous cooling conditions: a cellular automata-finite element modelling

    , Article Ironmaking and Steelmaking ; 2017 , Pages 1-9 ; 03019233 (ISSN) Monshat, H ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    Transformation of austenite to ferrite under continuous cooling condition was investigated. The heat conduction problem was managed by finite element method while two-dimensional cellular automata modeling was simultaneously performed to predict the progress of austenite decomposition using a two-step algorithm to reduce surface-to-volume ratio. Continuous cooling experiments on low carbon steel were made and the ferrite structure was determined and compared with the simulation data. The predicted and the experimental results demonstrated an acceptable consistency and the activation energy for ferrite growth was determined as 171 kJ/mole. The rate of ferrite transformation increased under... 

    Simulation of austenite decomposition in continuous cooling conditions: a cellular automata-finite element modelling

    , Article Ironmaking and Steelmaking ; Volume 46, Issue 6 , 2019 , Pages 513-521 ; 03019233 (ISSN) Monshat, H ; Serajzadeh, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Transformation of austenite to ferrite under continuous cooling condition was investigated. The heat conduction problem was managed by finite element method while two-dimensional cellular automata modeling was simultaneously performed to predict the progress of austenite decomposition using a two-step algorithm to reduce surface-to-volume ratio. Continuous cooling experiments on low carbon steel were made and the ferrite structure was determined and compared with the simulation data. The predicted and the experimental results demonstrated an acceptable consistency and the activation energy for ferrite growth was determined as 171 kJ/mole. The rate of ferrite transformation increased under... 

    A study on microstructural changes and mechanical properties in steel rods subjected to uniform and non-uniform cooling layout using a finite element analysis

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 222, Issue 12 , 2008 , Pages 1639-1649 ; 09544054 (ISSN) Nobari, A. H ; Serajzadeh, S ; Sharif University of Technology
    2008
    Abstract
    This paper presents a mathematical model for prediction of temperature history, final microstructures, and transformation kinetics in steel rods subjected to non-uniform cooling conditions. To achieve this goal, a mathematical model based on two-dimensional finite element method is developed to solve the governing heat conduction equation with non-uniform boundary conditions. The additivity rule is coupled with the finite element analysis to assess the kinetics of austenite decomposition during continuous cooling. The effect of decarburization during heating stage is also considered in the model employing Fick's second equation. To verify the predictions, time-temperature histories during...