Loading...
Search for: automotive-applications
0.005 seconds

    A theoretical approach to evaluate the rate capability of Li-ion battery cathode materials

    , Article Journal of Materials Chemistry A ; Vol. 2, issue. 1 , 2014 , pp. 107-115 ; ISSN: 20507488 Kalantarian, M. M ; Asgari, S ; Mustarelli, P ; Sharif University of Technology
    Abstract
    Charge-discharge rate capability is one of the most important properties of cathode materials for lithium batteries, in particular when envisaging high power density applications such as automotive applications. Efforts to modify rate have been carried out by carbon coating and decreasing particle size in order to modify electronic and ionic conductivity. However, this approach cannot justify all experimental data reported in the literature. Here, we investigated the rate capability of cathode materials by considering their density of states (DOS) calculated by several density functional theory (DFT) methods, in both the lithiated and the delithiated case. We suggested that these structures... 

    A new polypropylene/clay nanocomposite for replacement of engineering plastics in automotive application

    , Article Annual Technical Conference - ANTEC, Conference Proceedings ; Volume 1 , 2012 , Pages 102-109 ; 9781622760831 (ISBN) Zokaei, S ; Motamedi, P ; Bagheri, R ; Sharif University of Technology
    SPE  2012
    Abstract
    Polypropylene matrix nanocomposites reinforced with organoclay are investigated and their ability to replace some polyamide automotive parts is evaluated. This is so interesting from industrial point of view because of cost saving and ease of processing and recycling. This work is focused on different nanocomposite systems which are PP/nanoclay, and PP/PA/nanoclay. Also the effect of compatibilizer is presented here. Structure of these systems are studied by using WAXD, TEM and SEM. Mechanical properties of specimens are studied using uniaxial tensile test. As it will be demonstrated, nanoclay sheets tend to disperse in PA particles. On the other hand, introducing nanoclay into PP/PA blends... 

    Critical assessment: dissimilar resistance spot welding of aluminium/steel: challenges and opportunities

    , Article Materials Science and Technology (United Kingdom) ; Volume 33, Issue 15 , 2017 , Pages 1705-1712 ; 02670836 (ISSN) Pouranvari, M ; Sharif University of Technology
    Abstract
    Dissimilar joining of aluminium and steel, especially using resistance spot welding as a critical process in vehicle manufacturing, is a key challenge for multi-materials lightweight design strategy. Controlling the formation and growth of Al5Fe2 intermetallic is the outstanding issue for producing high strength crash-resistance Al/steel dissimilar resistance spot welds. This critical assessment highlights the current understating regarding factors affecting the joint properties and approaches to control the interfacial reaction. Finally, the unresolved scientific challenges are discussed with the goal of shedding light on the path forward to produce reliable metallurgical bonding between... 

    Welding metallurgy of stainless steels during resistance spot welding part II –heat affected zone and mechanical performance

    , Article Science and Technology of Welding and Joining ; Volume 20, Issue 6 , 2015 , Pages 512-521 ; 13621718 (ISSN) Alizadeh Sh, M ; Pouranvari, M ; Marashi, S. P. H ; Sharif University of Technology
    Maney Publishing  2015
    Abstract
    Implementation of new materials in automotive body-in-white requires through knowledge of their metallurgical response to welding process thermal cycle. This two-part paper aims at understanding the physical and mechanical metallurgy of stainless steels, as interesting candidates for automotive application, during resistance spot welding. The second part addresses the phase transformations in the heat affected zone of three types of stainless steels including austenitic, ferritic and duplex steels. Failure modes and mechanical properties of stainless steel resistance spot welds are discussed. The peak load and energy absorption of stainless steel resistance spot welds are compared with... 

    Investigation of mechanical properties of concrete containing liquid silicone rubber under axial loads

    , Article Shock and Vibration ; Volume 2021 , 2021 ; 10709622 (ISSN) Khaloo, A ; Darabad, Y. P ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    As the experts who have taken for granted the merits of utilizing the concrete as the most common material in the structural industry, there is a need to take affirmative steps to enhance the concrete's weaknesses such as the low ductility and energy absorption capacity. One possible way to improve the mechanical properties of concrete is to add liquid silicone rubber to the concrete. Silicone rubber is an elastomer (rubber-like material) composed of liquid rubber polymer and its hardener which is widely used in voltage line insulators, automotive applications, and medical devices. In order to increase the ductility and energy absorption of concrete, the liquid silicone rubber replaced a...