Loading...
Search for: autonomous-control
0.006 seconds

    Hierarchical power sharing control in DC microgrids

    , Article Microgrid: Advanced Control Methods and Renewable Energy System Integration ; 2016 , Pages 63-100 ; 9780081012628 (ISBN) Peyghami, S ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    Because of the advances in power electronics, DC-based power systems, have been used in industrial applications such as data centers [. 18], space applications [. 10], aircraft [. 12], offshore wind farms, electric vehicles [. 56], DC home systems [. 5, 20], and high-voltage DC transmission systems. To provide such sensitive loads with more reliability, efficiency, and controllability for future power systems, AC microgrid and more recently DC microgrid and smart-grid technologies have been employed [. 5-9].To obtain stable and optimal operation in DC power systems (microgrids), proper load sharing among different energy units and acceptable voltage regulation across the microgrid is... 

    Autonomous power management in LVDC microgrids based on a superimposed frequency droop

    , Article IEEE Transactions on Power Electronics ; 2017 ; 08858993 (ISSN) Peyghami, S ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Abstract
    In this paper a novel droop approach for autonomous power management in low voltage dc microgrids based on a master-slave concept is presented. Conventional voltage-based droop approaches suffer from poor power sharing due to line resistance effects on a virtual resistance, which is solved a by introducing a communication system to increase the current sharing accuracy. In this paper, a virtual frequency is superimposed by the master units, and slave units determine their output power according to the corresponding frequency-based droop characteristics. Unlike the voltage-droop methods, the proposed virtual frequency-droop approach can be applied for proportional power management among the... 

    Autonomous power management in LVDC microgrids based on a superimposed frequency droop

    , Article IEEE Transactions on Power Electronics ; Volume 33, Issue 6 , 2018 , Pages 5341-5350 ; 08858993 (ISSN) Peyghami, S ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, a novel droop approach for autonomous power management in low voltage DC (LVDC) microgrids based on a master-slave concept is presented. Conventional voltage-based droop approaches suffer from poor power sharing due to line resistance effects on a virtual resistance, which is solved by introducing a communication system to increase the current sharing accuracy. In this paper, a virtual frequency is superimposed by the master units, and slave units determine their output power according to the corresponding frequency-based droop characteristics. Unlike the voltage-droop methods, the proposed virtual frequency-droop approach can be applied for proportional power management among... 

    Hardware in the loop simulation and analysis of a model of fish robotic system

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 5 , 2010 , Pages 203-210 ; 9780791849194 (ISBN) Zeinoddini Meymand, S ; Vosoughi, G. R ; Farshchi, M ; Nemati, A ; Sharif University of Technology
    2010
    Abstract
    In the present study, an adaptive sliding mode control method was employed to control a fish robotic system using hardware in the loop methodology. Up to now, few researches have focused on autonomous control of fish robot in dynamic environments which may be the result of difficulties in modeling of hydrodynamic effects on fish robot. Therefore, following the introduction of the nonlinear model for the robot, elongated body theory, suggested by Lighthill, was used to analyze fish movements. Then, kinematics control to track desired trajectories was designed for under-actuated model of robot. Adaptive sliding mode controller, capable of adapting according to changes and uncertainties, was...