Loading...
Search for: axial-displacements
0.006 seconds

    Theoretical and experimental investigation of transformer winding fault detection using comparison of transfer function coefficients

    , Article Transactions on Electrical Engineering, Electronics, and Communications ; Volume 10, Issue 1 , 2012 , Pages 10-16 ; 16859545 (ISSN) Bigdeli, M ; Vakilian, M ; Rahimpour, E ; Azizian, D ; Sharif University of Technology
    2012
    Abstract
    In this work, a new model of transformer winding is developed. The components in the model are determined by the geometric and electric data of the winding (detailed model) and using experimental data based on genetic algorithm. Under different degrees of axial displacement and radial deformation in the winding, the circuit parameters of the model will change and thus the equivalent circuit characteristics will be influenced. After acquiring the model parameters in the intact and faulted cases, transfer function coefficients are derived in model using nodal analysis. Subsequently, introducing a new index based on these coefficients, the type and extent of penetration of the fault in the... 

    Comparison of transfer functions using estimated rational functions to detect winding mechanical faults in transformers

    , Article Archives of Electrical Engineering ; Volume 61, Issue 1 , 2012 , Pages 85-99 ; 00040746 (ISSN) Bigdeli, M ; Vakilian, M ; Rahimpour, E ; Sharif University of Technology
    2012
    Abstract
    As it is found in the related published literatures, the transfer function (TF) evaluation method is the most feasible method for detection of winding mechanical faults in transformers. Therefore, investigation of an accurate method for evaluation of the TFs is very important. This paper presents three new indices to compare the transformer TFs and consequently to detect the winding mechanical faults. These indices are based on estimated rational functions. To develop the method, the necessary measurements are carried out on a 1.3 MVA transformer winding, under intact condition, as well as different fault conditions (axial displacement of winding). The obtained results demonstrate the high... 

    Transformer winding faults classification based on transfer function analysis by support vector machine

    , Article IET Electric Power Applications ; Volume 6, Issue 5 , 2012 , Pages 268-276 ; 17518660 (ISSN) Bigdeli, M ; Vakilian, M ; Rahimpour, E ; Sharif University of Technology
    Abstract
    This study presents an intelligent fault classification method for identification of transformer winding fault through transfer function (TF) analysis. For this analysis support vector machine (SVM) is used. The required data for training and testing of SVM are obtained by measurement on two groups of transformers (one is a classic 20 kV transformer and the other is a model transformer) under intact condition and under different fault conditions (axial displacement, radial deformation, disc space variation and short circuit of winding). Two different features extracted from the measured TFs are then used as the inputs to SVM classifier for fault classification. The accuracy of proposed... 

    Finite strain numerical analysis of elastomeric bushings under multi-axial loadings: A compressible visco-hyperelastic approach

    , Article International Journal of Mechanics and Materials in Design ; Volume 9, Issue 4 , December , 2013 , Pages 385-399 ; 15691713 (ISSN) Khajehsaeid, H ; Baghani, M ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    Elastomers have wide and ever increasing applications in several industries. In this work a compressible visco-hyperelastic approach is employed to investigate the behavior of elastomeric materials. The time-discrete form of the material model is developed to be used in numerical simulations. This formulation provides a recursive relation to update the stress in any time step regarding the deformation history. By means of analytical solutions derived for pure torsion of a solid circular cylinder, the numerical implementation is validated and then, the response of an elastomeric bushing is investigated in torsional, axial and combined deformations. These bushings are used in suspension... 

    A probabilistic neural network classifier-based method for transformer winding fault identification through its transfer function measurement

    , Article International Transactions on Electrical Energy Systems ; Volume 23, Issue 3 , 2013 , Pages 392-404 ; 20507038 (ISSN) Bigdeli, M ; Vakilian, M ; Rahimpour, E ; Sharif University of Technology
    2013
    Abstract
    In this paper, a new method is introduced for identification of transformer winding fault through transfer function analysis. For this analysis, vector fitting and probabilistic neural network are used. The results of transfer functions estimation through vector fitting are employed for training of neural network, and consequently, probabilistic neural network is used for classification of faults. The required data for fault type identification are obtained by measurements on two groups of transformers (one is a classic 20 kV transformer, and the other is a model transformer) under intact condition and under different fault conditions (axial displacement, radial deformation, disc space... 

    Transformer winding diagnosis using comparison of transfer function coefficients

    , Article ECTI-CON 2011 - 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand - Conference 2011, 17 May 2011 through 19 May 2011, Khon Kaen ; 2011 , Pages 681-683 ; 9781457704246 (ISBN) Bigdeli, M ; Vakilian, M ; Rahimpour, E ; Azizian, D ; Sharif University of Technology
    2011
    Abstract
    In this work, a new model of transformer winding is developed. The components in the model are determined by the geometric and electric data of the winding. Under different degrees of axial displacement and radial deformation in the winding, circuit parameters in the model will be changed and thus the character of the circuit will be influenced. After acquiring the model parameters in the intact and faulted cases, transfer function coefficients derived in model from nodal analysis. Then using introduce the new index based on coefficients we can specify the type and extent of penetration of the fault in the winding. Results presented demonstrate the potential of this method